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vacuum polarisation in a theory withNf = 2 flavours can be described as independent correlation

functions, respectively. We show how this allows to use twisted boundary conditions for the

connected contribution in order to improve theq2-resolution in lattice QCD. Furthermore we
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chiral perturbation theory. We discuss extensions to theories with more than 2 dynamical flavours.
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e+e−-annihilation 690.3(5.3)×10−10 [1]

LQCD
713(15)×10−10

[2]
748(21)×10−10

446(23)×10−10 [3]
in progress [4]

Table 1: Some recent results for the leading hadronic contribution to the muon anomalous moment,ahad
µ .

1. Introduction

As recently summarized in [1] the current experimental value for the full muon anomalous
magnetic moment isaµ = 11659208(6.3) × 10−10 which has to be compared to the Standard
Model prediction ofaµ = 11659179(6.5) × 10−10. Although there are discussions about how to
correctly estimate the size of the systematic errors there persists a tension between experiment
and theory which amounts to around three standard deviations (3.2σ in the comparison quoted
above). The muon anomalous moment is a remarkable observable in that all three sectors of the
SM contribute considerably. While perturbation theory is employed in order to predict QED and
weak contributions, the leading and next-to-leading hadronic contributions are non-perturbative
effects. Lacking reliable and precise theory computationsfrom first principles the current SM pre-
dictions for the leading hadronic contributionahad

µ are derived from experimental measurements
of e+e−-annihilation into hadrons leading to a world average [1] for the hadronic contribution of
ahad

µ = 690.3(5.3)×10−10.
Table 1 summarizes previous attempts to computeahad

µ in lattice QCD in comparison with
the determination frome+e− annihilation. Without going into the technical details of the various
attempts to computeahad

µ on the lattice it is obvious that currently the purely theoretical predictions
can’t match the level of precision which can be reached via the experimental determination. But
yet, an independent confirmation of the result frome+e−-annihilation matching it in precision and
by means of a SM calculation is clearly desireable.

The leading hadronic contribution to the muon anomalous moment is the convolution integral

ahad
µ = 4π2

(αEM

π

)2
∞∫

0

dK2 f (K2)
(
Π(K2)−Π(0)

)
, (1.1)

whereK is the Euclidean momentum and the functionf (K2) in (1.1) diverges forK2 → 0 (see e.g.
the discussion in [5]).Π(K2) is the vacuum polarization which for a theory withNf quark flavours
is defined through

Π(Nf )
µν (q) = (qµqν −gµνq2)Π(q2) = i

∫

d4xeiqx〈 j
(Nf ,EM)
µ (x) j

(Nf ,EM)
ν (0)〉 , (1.2)

where j
(Nf ,EM)
µ is the corresponding electromagnetic current.

Apart from the usual sources of systematic errors in simulations of lattice QCD (unphysically
heavy quark mass, finite volume, cut-off effects) we identify three sources of systematic errors that
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have to be brought under control in order to be able to make precise predictions forahad
µ from first

principles:

1) since f (K2) in (1.1) diverges forK2 → 0 it is crucial to have a good momentum resolution
for Π for small values ofK. Given that the smallest Fourier mode in eqn. (1.2) on the lattice
for typical simulation parameters is2π

2L ≈ 250MeV (L being the spatial extent of the lattice
and usually the time-extent is chosen asT = 2L) one currently extrapolates results forΠ(q2)

from the region where lattice data is available using some phenomenological ansatz

2) carrying out the Wick contraction in (1.2) reveals contributions from quark-disconnected
diagrams which are notoriously hard to compute in lattice QCD

3) Aubin and Blum [2] found strong signs for vector dominancein their lattice data which has
to be modelled in order to allow for a reliable description ofthe data within an effective
theory frame work.

Here we suggest a computational strategy that should allow to systematically reduce the uncertain-
ties due to 1) and 2). Concerning 3) we will follow [2] as long as the simulated quark masses are
unphysically large. They used a model where a vector particle is added to the chiral Lagrangian as
an additional degree of freedom in order to better describe their lattice data forΠ(q2). This work is
part of a major effort by the Mainz group aiming at a precisioncomputation of the leading hadronic
contribution to the muon anomalous moment (see also HartmutWittig’s talk [6]).

2. New strategy for Nf = 2

Partially twisted boundary conditions [7, 8, 9, 10, 11, 12, 13, 14, 15] have now been used
successfully to improve computations of observables of processes that depend on the hadron mo-
mentum. However, as already stated in [9] the net effect of the twist in flavour neutral hadrons,
like e.g. theπ0 is zero since the twist of the quark and the anti-quark cancel. The situation is sim-
ilar here - the electromagnetic current is flavour diagonal,hence a naive application of (partially)
twisted boundary conditions is ruled out.

The correlator entering eqn. (1.2) forNf = 2 is

〈 j(2,EM)
µ j(2,EM)

ν 〉 =
4
9
〈 juu

µ juu
ν 〉− 2

9
〈 juu

µ jdd
ν 〉− 2

9
〈 jdd

µ juu
ν 〉+ 1

9
〈 jdd

µ jdd
ν 〉 , (2.1)

where we make the flavor content of the quark bilinear currents explicit and where we have fac-
torized out the electromagnetic charges of the quarks in units of e on the r.h.s.. The first and the
last correlator on the r.h.s. receive contributions from both a quark-connected and a disconnected
diagram and the second and third correlator are disconnected, only. After carrying out the Wick
contractions and using iso-spin symmetry (mq ≡ mu = md), the two point function one has to com-
pute in a lattice simulation is

C(2,EM)
µν (q) = ∑

x
eiqx

{〈
5
9Tr

{
q̄(x)γνq(x)q̄(0)γµq(0)

}
+

1
9Tr

{
γνq(x)q̄(x)

}
Tr

{
γµq(0)q̄(0)

}〉}

,
(2.2)
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which again using iso-spin can be written in the equivalent form

C(2,EM)
µν (q) = ∑

x
eiqx

{
5
9

〈

Tr
{

ū(x)γνd(x)d̄(0)γµu(0)
}〉

︸ ︷︷ ︸

≡C(2,con)
µν (q)

+

1
9

〈

Tr
{

γνd(x)d̄(x)
}

Tr
{

γµu(0)ū(0)
}〉

︸ ︷︷ ︸

≡C(2,disc)
µν (q)

}

.
(2.3)

By using iso-spin we are able to express the vacuum polarization in terms of two correlation func-
tionsC(2,con)

µν (q) andC(2,disc)
µν (q) with their individual continuum and infinite volume limits.The

crucial point to note is that in this way the coupling of the photon to the quark in the connected
piece has been replaced by a coupling to a flavour non-diagonal current and partially twisted bound-
ary conditions can be applied. We note that a similar trick has been used for computations of the
electromagnetic pion form factor in [16, 17].

We are still left with the question of how to treat the disconnected part. To this end we resort
to the description of the vacuum polarization inSU(2) chiral perturbation theory at NLO. InSU(2)

the electromagnetic current receives a singlet contribution,

juu
µ = 1

2ψ̄(
√

2σ0 + σ3)γµ ψ jdd
µ = 1

2ψ̄(
√

2σ0−σ3)γµψ
jud
µ = 1

2ψ̄(σ1 + iσ2)γµ ψ jdu
µ = 1

2ψ̄(σ1− iσ2)γµψ
(2.4)

whereψT = (u,d), σi for i = 1,2,3 are the Pauli matrices andσ0 =
√

1/212×2. The effective theory
that describes theNf = 2 vacuum polarization isSU(2) chiral perturbation theory as formulated in
[18] but including atO(p4) terms with non-vanishing flavour-trace,

L
(4) = 2l5〈U†L̂µνUR̂µν〉+4h2〈R̂µνR̂µν + L̂µνL̂µν〉

︸ ︷︷ ︸

flavour off−diagonal

+4hs〈Rµν +Lµν〉〈Rµν +Lµν〉
︸ ︷︷ ︸

flavour−diagonal

, (2.5)

where angular brackets indicate a flavour trace and thehat indicates that the latter has been sub-
tracted (cf. [19] for further details on the notation). Notethe additional low energy constanths

multiplying the flavour diagonal term.
The diagrams contributing at NLO are illustrated in figure 1 and our preliminary result is

Π(2)
µν(q)= Π(3,3)

µν (q)+ 1
9Π(0,0)

µν (q)

= −(qµqν −gµνq2)
(

i4B̄21(q2,m2
π)+2l5(µ0)+4h2(µ0)+ 4

9hs+ 1
48π2 ln

(
m2

π
µ2

0

))

,
(2.6)

whereµ0 is the renormalization scale and̄B21(q2,m2
π) is a loop integral (cf. [19]). The contribu-

tionsΠ(a,a)
µν (a = 0,1,2,3) are the effective theory descriptions of 2pt-correlators constructed of the

currentscψ̄γµ/ν σaψ , wherec∈C is a normalization. We add thatΠ(0,0)(q2) = Π(0,0) is momentum
independent at NLO and only depends on the low energy constant hs.

Alternatively it is possible to express the quark-connected and disconnected contributions in-
dividually in the effective theory (the linear combinationof which should of course again yield
eqn. (2.6)). We computed the corresponding expressions as

Π(2,con)(q2)= 10
9 Π(3,3)(q2) ,

Π(2,disc)(q2)= 1
9

(
Π(0,0) −Π(3,3)(q2)

)
.

(2.7)
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Figure 1: Diagrams in chiral perturbation theory that contribute to the vacuum polarization at NLO.

SinceΠ(0,0) is independent ofq2, the quark-disconnected part turns out to have the same momen-
tum dependence as the connected part up to a finite shift proportional tohs,

Π(2,disc)(q2) = 1
9Π(0,0) − 1

10Π(2,con)(q2) . (2.8)

Assuming the validity of chiral perturbation theory at NLO the knowledge ofhs allows to fully
predict the quark-disconnected contribution.

The leading hadronic contribution to the muon anomalous moment is computed from

Π̂(q2) ≡ Π(q2)−Π(0) . (2.9)

One immediate observation is, that at NLO in chiral perturbation theory this expression is free
of low energy constants since the loop integrals carry all the momentum dependence. A crucial
consequence which to our knowledge hasn’t been realized before is, that e.g. in the case ofSU(2),

Π̂(q2)|disc

Π̂(q2)|con
= − 1

10
. (2.10)

This is a remarkable result which tells us that at this order of the effective theory the disconnected
part shifts the central value of the connected part by minus ten per cent.

3. Conclusions and outlook

To summarize, we have shown how partially twisted boundary conditions can be used to im-
prove the momentum resolution in lattice computations of the hadronic vacuum polarization of a
photon. It was shown how to analytically predict at NLO in chiral perturbation theory the contribu-
tion of quark-disconnected diagrams to the leading hadronic contribution of the muon anomalous
magnetic moment. It turns out that it’s effect is to reduce the contribution of the connected part by
10%.

We are currently working on extending these arguments to thecase ofNf = 2+1 flavours. One
complication there is that the iso-spin argument that allowed us to write the quark-connected and
disconnected pieces as individual correlation functions in the case ofNf = 2 does not work straight
forwardly since the strange quark doesn’t have an iso-spin partner. Naively the ¯sγµs-contribution to
the EM current can therefore not be written in terms of a flavoroff-diagonal current. Our strategy
is to extend the flavour group fromSU(3) to SU(3+ 1|1), i.e. to a graded flavour group with an
additional partially quenched quark (which we callr-quark) that behaves like a mass-degenerate
iso-partnerof the s-quark. Then the quark-connected and disconnected pieces can be written in
terms of individual correlation functions.
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Since quark-disconnected diagrams are extremely difficultto compute on the lattice, we will
investigate if our method to predict their contribution in the frame work of chiral perturbation
theory can be applied to other phenomenologically interesting observables in QCD.

Following [9] we are also computing the finite volume effectsfor the vacuum polarization
including the effect of partial twisting.

Another task that remains to be finished is the inclusion of vector degrees of freedom in order
to be able to extrapolate the lattice data to physical quark masses and to assess the vector particle’s
effect on the stability of eqn. (2.10).

As a joint effort the Mainz group has implemented correlation functions relevant for a lattice
computation ofahad

µ in a C-code. First computations on gauge configurations ofNf = 2 non-
perturbatively improved Wilson fermions which were generated as a collaborative effort within
CLS (cf. the talks by Hartmut Wittig’s [6] and Stefan Schäfer[20] at this conference) have been
carried out on the Mainz Wilson-Cluster.

Acknowledgements: We warmly thank Dalibor Djukanovic, Jambul Gegelia, Chris Sachra-
jda, Stefan Scherer and Hartmut Wittig for valuable discussions.
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