
P
o
S
(
L
A
T
2
0
0
9
)
1
4
5

Nucleon form factors with NF = 2 twisted mass
fermions

C. Alexandrou∗ (a,b), T. Korzec†(a), G. Koutsou (a,c)

(a) Department of Physics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
(b) Computation-based Science and Technology Research Center, Cyprus Institute, 15
Kypranoros St., 1645 Nicosia, Cyprus
(c) Bergische Universität Wuppertal, Fachbereich Physik, 42097 Wuppertal, Germany and
JSC and IAS, FZ Jülich, 52425 Jülich, Germany
E-mail: alexand@ucy.ac.cy, korzec@ucy.ac.cy, i.koutsou@fz-juelich.de

R. Baron, P. Guichon
CEA-Saclay, IRFU/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
E-mail: remi.baron@cea.fr, pierre.guichon@cea.fr

M. Brinet, J. Carbonell, P.-A. Harraud
Laboratoire de Physique Subatomique et Cosmologie, UJF/CNRS/IN2P3, 53 avenue des
Martyrs, 38026 Grenoble, France
E-mail: mariane@lpsc.in2p3.fr, Jaume.Carbonell@lpsc.in2p3.fr,
harraud@lpsc.in2p3.fr

K. Jansen,
NIC, DESY, Platanenallee 6, D-15738 Zeuthen, Germany
Email: Karl.Jansen@desy.de

We present results on the electromagnetic and axial nucleon form factors using two degenerate
flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing
of about 0.09 fm. We consider pion masses in the range of 260-470 MeV. We chirally extrapolate
results on the nucleon axial charge, the isovector Dirac and Pauli root mean squared radii and
magnetic moment to the physical point and compare to experiment.

The XXVII International Symposium on Lattice Field Theory - LAT2009
July 26-31 2009
Peking University, Beijing, China

∗Speaker.
†Current address:Institut für Physik Humboldt Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:alexand@ucy.ac.cy
mailto:korzec@ucy.ac.cy
mailto:i.koutsou@fz-juelich.de
mailto:remi.baron@cea.fr
mailto:pierre.guichon@cea.fr
mailto:mariane@lpsc.in2p3.fr
mailto:Jaume.Carbonell@lpsc.in2p3.fr
mailto:harraud@lpsc.in2p3.fr
mailto:Karl.Jansen@desy.de


P
o
S
(
L
A
T
2
0
0
9
)
1
4
5

Nucleon form factors with dynamical TMF C. Alexandrou

1. Introduction

Twisted mass fermions [1] provide an attractive formulation of lattice QCD that allows for
automatic O(a) improvement, infrared regularization of small eigenvalues and fast dynamical sim-
ulations. A particularly attractive feature for the calculation of the nucleon form factors discussed
in this work is the automatic O(a) improvement obtained by tuning only one parameter, requiring
no further improvements on the operator level. Important physical results are emerging using gauge
configurations generated with two degenerate flavors of twisted quarks (NF = 2) in both the me-
son [2] and baryon [3] sectors. An example is the accurate determination, using precise results in
the meson sector, of low energy constants of great relevance to phenomenology. Currently, NF = 2
simulations are available for pion mass in the range of about 260-470 MeV for three lattice spacings
a < 0.1 fm allowing for continuum and chiral extrapolations. In this work we discuss high-statistics
results on the nucleon form factors obtained at one value of the lattice spacing. Electromagnetic
and axial form factors (FFs) of the proton and the neutron are fundamental quantities that yield
information on their internal structure such as their size, magnetization and axial charge. They
have been studied experimentally for a long time improving their measuements both in terms of
precision as well as in terms of probing larger momentum transfers. Several lattice collaborations
are currently using dynamical fermions to calculate these fundamental quantities [4, 5].

The action for two degenerate flavors of quarks in twisted mass QCD is given by

S = Sg +a4 ∑
x

χ̄(x)

[

1
2γµ(∇µ +∇∗

µ)− ar
2 ∇µ∇∗

µ +mcrit + iγ5τ3µ
]

χ(x) , (1.1)

where we use the tree-level Symanzik improved gauge action Sg. The quark fields χ are in the
so-called "twisted basis" obtained from the "physical basis" at maximal twist by the transforma-
tion ψ = 1√

2 [1 + iτ3γ5]χ and ψ̄ = χ̄ 1√
2 [1 + iτ3γ5]. We note that, in the continuum, this action is

equivalent to QCD. A crucial advantage is the fact that by tuning a single parameter, namely the
bare untwisted quark mass to its critical value mcr, physical observables are automatically O(a)

improved. A disadvantage is the explicit flavor symmetry breaking. In a recent paper we have
checked that this breaking is small for baryon observables for the lattice spacing discussed here [6].

To extract the nucleon FFs we need to evaluate the nucleon matrix
elements 〈N(p f ,s f )| jµ |N(pi,si)〉, where |N(p f ,s f )〉, |N(pi,si)〉 are
nucleon states with final (initial) momentum p f (pi) and spin s f (si)

and jµ is either the electromagnetic current V EM
µ (x) = 2

3 ū(x)γµu(x)−
1
3 d̄(x)γµd(x) or the axial current Aa

µ(x) = ψ̄(x)γµγ5
τa

2 ψ(x). Whereas
the matrix element of the axial current receives contributions only
from the connected diagram shown in Fig. 1 the electromagnetic
one has, in addition, disconnected contributions. In the isospin limit
the matrix element of the isovector electromagnetic current V a

µ (x) =

ψ̄(x)γµ
τa

2 ψ(x) has no disconnected contributions [7]. Therefore in
this work we only evaluate the isovector nucleon FFs obtained from
the connected diagram.

tf t

~q

ti

Fig.1: Connected nucleon
three-point function.

The electromagnetic matrix element of the nucleon can be expressed in terms of the Dirac and
Pauli form factors, F1 and F2 defined, in Euclidean time, as
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〈N(p f ,s f )|Vµ(0)|N(pi,si)〉=

√

m2
N

EN(~p f )EN(~pi)
ū(p f ,s f )Oµu(pi,si), Oµ = γµF1(Q

2)+
iσµν qν

2mN
F2(Q

2)

with q = p f − pi the momentum transfer and Q2 = −q2. These are related to the Sachs electric GE

and magnetic GM FFs via: GE(Q2) = F1(Q2)− Q2

(2mN)2 F2(Q2) and GM(Q2) = F1(Q2)+F2(Q2).

Similarly, the axial current matrix element of the nucleon 〈N(p f ,s f )|Aa
µ(0)|N(pi,si)〉 can be

expressed in terms of the form factors GA and Gp with Oµ given by

Oµ =

[

−γµγ5GA(Q2)+ i
qµγ5
2mN

Gp(Q
2)

]

τa

2 .

2. Lattice evaluation

The nucleon interpolating field in the physical basis J(x) = ε abc
[

ua>(x)C γ5db(x)
]

uc(x) can
be written in the twisted basis at maximal twist as J̃(x) = 1√

2 [
�

+ iγ5]εabc
[

ũa>(x)C γ5d̃b(x)
]

ũc(x).
The transformation of the electromagnetic current, V a

µ (x), to the twisted basis leaves the form of
V 0,3

µ (x) unchanged. We use the Noether lattice current and therefore the renormalization constant
ZV = 1. The axial current A3

µ also has the same form in the two bases. In this case we use the
local current and therefore we need the renormalization constant ZA. The value of ZA = 0.76(1) [8]
was determined non-perturbatively in the RI’-MOM scheme. This value is consistent with a recent
analysis [9], which uses a perturbative subtraction of O(a2) terms [10] for a better identification
of the plateau yielding a value of ZA = 0.768(3) [9]. In order to increase overlap with the proton
state and decrease overlap with excited states we use Gaussian smeared quark fields [11] for the
construction of the interpolating fields: qa(t,~x) = ∑~y Fab(~x,~y;U(t)) qb(t,~y) with F = (

�
+ αH)n

and H(~x,~y;U(t)) = ∑3
i=1[Ui(x)δx,y−ı̂ +U†

i (x− ı̂)δx,y+ı̂]. In addition we apply APE-smearing to the
gauge fields Uµ entering H. The smearing is the same as for our calculation of baryon masses with
the smearing parameters α and n optimized for the nucleon ground state [3].

To set the scale we use the nucleon mass in the physical limit. We show in Fig. 2 results at
three values of the lattice spacings corresponding to β = 3.9, β = 4.05 and β = 4.2. As can be
seen, cut-off effects are negligible and we can therefore use continuum chiral perturbation theory
to extrapolate to the physical point. We correct for volume dependence coming from pions propa-
gating around the lattice [12]. To chirally extrapolate we use the well-established O(p3) result of
heavy baryon chiral perturbation theory (HBχPT) given by

mN = m0
N −4c1m2

π −
3g2

A

16π f 2
π

m3
π . (2.1)

We perform a fit to the volume corrected results at β = 3.9, β = 4.05 and β = 4.2 and extract
r0 = 0.462(5) fm. Fitting instead to the β = 3.9, β = 4.05 results we find r0 = 0.465(6) fm show-
ing that indeed cut-off effects are small. To estimate the error due to the chiral extrapolation we use
HBχPT to O(p4), which leads to r0 = 0.489(11). We take the difference between the O(p3) and
O(p4) mean values as an estimate of the uncertainty due to the chiral extrapolation. Fits to other
higher order χPT formulae shown in Fig.3 and described in Ref. [3] are consistent with O(p4)

HBχPT. Using r0 = 0.462(5)(27) and the computed r0/a ratios we obtain aβ=3.9 = 0.089(1)(5),
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aβ=4.05 = 0.070(1)(4) and aβ=4.2 = 0.056(2)(3). These values are consistent with the lattice spac-
ings determined from fπ and will be used for converting to physical units in what follows. We note
that results on the nucleon mass using twisted mass fermions agree with those obtained using other
lattice O(a2) formulations for lattice spacings below 0.1 fm [6].

Fig.2: Nucleon mass in units of r0 at 3 lattice spac-
ings and spatial lattice size L such that mπ L > 3.5.

Fig.3: Nucleon mass in units r0. The solid and
dashed lines are fits to O(p3) and O(p4) HBχPT.

In order to calculate the aforementioned nucleon matrix elements we calculate respectively the
two-point and three-point functions: G(~q, t f ) = ∑~x f

e−i~x f ·~q Γ0
βα 〈Jα(t f ,~x f )Jβ (0)〉 and Gµ(Γν ,~q, t) =

∑~x,~x f
ei~x·~q Γν

βα 〈Jα(t f ,~x f ) jµ(t,~x)Jβ (0)〉, where the projection matrices Γ0 = 1
4(

�
+ γ0) and Γk =

iΓ0γ5γk. The kinematical setup that we used is illustrated in Fig. 1: We create the nucleon at ti = 0,
~x = 0 (source) and annihilate it at t f /a = 12, ~p f = 0 (sink). We checked that the sink-source time
separation of 12a is sufficient for the isolation of the nucleon ground state by comparing the results
with those obtained when t f /a = 14 is used [7]. We insert the current jµ at t carrying momentum
~q = −~pi. In this work we limit ourselves to the calculation of the connected diagram which in the
isospin limit yields the isovector electromagnetic form factors. This is calculated by performing
sequential inversions through the sink so that no new inversions are needed for different operator
jµ(t,~q). However new inversions are necessary for a different choice of the projection matrices
Γα . In this work, we consider the four choices given above, which are optimal for the form factors
considered here and construct the ratio

Rµ =
Gµ(Γ,~q, t)

G(~0, t f )

√

G(~pi, t f − t)G(~0, t)G(~0, t f )

G(~0, t f − t)G(~pi, t)G(~pi, t f )

t f−t,t→∞−→ Πµ(Γ,~q) . (2.2)

The leading time dependence and overlap factors cancel yielding as the plateau value Πµ(Γ,~q)

from which we extract the form factors using the relations

Πµ(Γ0,~q) =
c

2m
[(m+E)δ0,µ + iqkδk,µ ] GE(Q2), Πi(Γk,~q) =

c
2m ∑

jl

ε jklq jδl,i GM(Q2)

and Π5i(Γk,~q) = ic
4m

[qkqi
2m Gp(Q2)− (E +m)δi,k GA(Q2)

]

, k = 1, · · · ,3, where c =
√

2m2

E(E+m) .

3. Results

3.1 Isovector electromagnetic form factors

The isovector electric and magnetic form factors at β = 3.9 are shown in Figs. 4 and 5 respec-
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tively on lattices of size 243×48 and 323×64 and for the pion masses and statistics listed in Fig. 6.

Fig. 4: The isovector electric form factor as a func-
tion of Q2 compared to experiment (solid curve).

Fig. 5:The isovector magnetic form factor as a func-
tion of Q2 compared to experiment (solid curve).

By fitting the isovector magnetic form factor to a dipole form we extract the isovector magnetic
moment and Dirac and Pauli root mean squared (r.m.s.) radii shown in Figs. 6 and 7. As can be
seen, the results obtained using twisted mass fermions are in agreement with recent results using
dynamical domain wall fermions (DWF). Heavy baryon chiral perturbation theory to one-loop [13]
can be used to extrapolate to the physical point. In the case of the Dirac r.m.s radius we fit the
product r2

2κv so that only one fit parameter enters just as in the case of r2
1. This shifts the curve but

does not affect its slope. We show fits to our results alone as well as when we include the results
obtained by the RBC-UKQCD collaborations [4]. The magnetic moment with three fit parameters
is reproduced whereas for r2

1 we obtained a weaker dependence on the pion mass as compared to
the one predicted in chiral expansions.

mπ (GeV) no. of confs L
0.258 667 32
0.296 231 32
0.302 944 24
0.373 210 24
0.429 365 24
0.465 477 24

Fig. 6: The anomalous isovector magnetic
moment of the nucleon. Fig 7: The Dirac (upper) and Pauli (lower) r.m.s

radii.
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3.2 Axial charge

Our results on the nucleon axial charge are shown in Fig. 8 and are in agreement with those
obtained using domain wall fermions. Within our errors no sizable finite volume effects are ob-
served. In order to extrapolate to the physical point we use one-loop chiral perturbation theory in
the small scale expansion [14].

There are three parameters to fit:
gA(0), the value of the axial charge
at the chiral point, g1 and a counter-
term CSSE . Fitting using the TMF re-
sults we find gA(0) = 1.10(13), g1 =

6.05(4.66) and CSSE =−3.65(3.58).
The parameters g1 and CSSE are
highly correlated explaining the re-
sulting large error band. Including in
the fit the DWF data that span larger
pion masses we obtain a very differ-
ent curve, showing the sensitivity in
the chiral extrapolation of gA. Fig. 8: The nucleon axial charge. The solid (dashed) curve is a

chiral fit using TMF (TMF and DWF) results.

3.3 Axial form factors

Results for the axial form factors GA(Q2) and Gp(Q2) are shown in Figs. 9 and 10 respectively.
We perform a dipole fit to GA(Q2) extracting an axial mass larger than in experiment as expected
from the smaller slope shown by the lattice data both for TMF and DWF. Assuming pion pole
dominance we can relate the form factor Gp(q2) to GA(Q2). Using the pion mass measured on the
lattice we predict the dashed curve shown in Fig. 10. Our lattice data on Gp(q2) are flatter than
pion pole dominance predicts requiring a larger pole mass than the pion mass. Large volume effects
are expected at low Q2 indicated by the deviation of Gp(Q2) from the fitted curve at the smallest
Q2-value.

Fig. 9: Axial form factor GA(Q2) as a function of
Q2. The dashed (solid) line is the best dipole fit to
the lattice (experimental) results.

Fig. 10: The dotted line is a fit of lattice results to
the form CGA(Q2)

(Q2+m2)
and the dashed (solid) line is the

prediction of pion pole dominance using lattice (ex-
perimental) results on GA(Q2).
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4. Conclusions

Using NF = 2 twisted mass fermions we obtain accurate results on the isovector electromag-
netic GE ,GM and axial GA,Gp form factors as a function of Q2 for pion mass in the range of about
260-470 MeV. The general feature is a flatter dependence on Q2 than experiment. The Dirac r.m.s
radius thus shows a weaker dependence on the pion mass than expected from chiral perturbation
theory. Finite volume effects are found to be small on quantities like gA and the isovector magnetic
moment and r.m.s radii. Our results are in agreement with recent results obtained using dynamical
NF = 2+1 DWF. At the physical point using TMF we find gA = 1.13(10) close to the experimental
value albeit with a large error due to the chiral extrapolation. An analysis of these form factors at
β = 4.05 is under way so that a check of cut-off effects can be carried out.
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