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1. Introduction

The structure of hadrons, such as size, shape and charge distributioncan be probed by the
electromagnetic form factors. TheΩ− baryon, consisting of three valence strange quarks, is sig-
nificantly more stable than other members of the baryon decuplet, such as the∆, with a life-time
on the order of 10−10s. This fact makes the calculation of its electromagnetic form factors par-
ticularly interesting since they are accessible to experimental measurements. Its magnetic dipole
moment is measured to very good accuracy unlike those of the other decuplet baryons. A value of
µΩ− = −2.02(5) is given in the PDG [1] in units of nuclear magnetons (µN). Within lattice QCD
one can directly compute hadron form factors starting from the fundamental theory of the strong
interactions. Furthermore, higher order multipole moments, not detectable by current experimental
setups, are accessible to lattice methods. Higher-order moments such as the electric quadrupole
are essential in the determination of the deformation of a hadron state. In this work, we calculate
the electromagnetic form factors of theΩ− baryon using, for the first time, dynamical domain-wall
fermion configurations. For the calculation we use the fixed-sink approach which enables us to
calculate the form factors for all values and directions of the momentum transfer ~q concurrently.
The main advantages of this approach is that it allows an increased statisticalprecision, while at
the same time it provides the fullQ2 dependence. Moreover, by constructing optimized sources
we calculate the two dominant form factors accurately. An appropriately defined source for the
subdominant electric quadrupole form factor is constructed and tested [2]. The aim is to obtain an
accurate determination of the quadrupole moment, at a price, of course, ofadditional sequential
inversions.

2. Electromagnetic form factors of theΩ− baryon

The on-shellΩ− matrix element of the electromagnetic currentjµ
EM, can be decomposed in

terms of four independent Lorentz covariant vertex functions,a1(q2), a2(q2), c1(q2) andc2(q2),
which depend only on the squared momentum transferq2 = −Q2 = (pi − pf )

2. In Minkowski
spacetime these are given by [3]

〈Ω(pf ,sf )| j
µ
EM|Ω(pi ,si)〉 =

√

m2
Ω

EΩ(~pf )EΩ(~pi)
ūσ (pf ,sf )O

σ µτuτ(pi ,si), (2.1)

O
σ µτ = −gστ

[

a1(q
2)γµ +

a2(q2)

2mΩ

(

pµ
f + pµ

i

)

]

−
qσ qτ

4m2
Ω

[

c1(q
2)γµ +

c2(q2)

2mΩ

(

pµ
f + pµ

i

)

]

. (2.2)

The rest mass and the energy of the particle are denoted bymΩ andEΩ. The initial (final) four-
momentum and spin-projection are given bypi (pf ) andsi (sf ). In addition, every vector com-
ponent of the spin-32 Rarita-Schwinger vector-spinoruσ satisfies the Dirac equation,

(

pµγµ −

mΩ
)

uσ (p,s) = 0, along with the auxiliary conditions:γσ uσ (p,s) = 0 andpσ uσ (p,s) = 0. Further-
more, the covariant vertex functions are linearly related to the experimentallymeasured electric
GE0(q2), GE2(q2) and magneticGM1(q2) andGM3(q2) multipole form factors [2, 3].
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3. Lattice techniques

We employ gauge configurations generated by the RBC-UKQCD joint collaborations using
Nf = 2+1 dynamical domain-wall fermions (DWF) and the Iwasaki gauge-action corresponding
to a pion mass of about 330 MeV. The simulation is carried out on a lattice of size243×64 with
a lattice spacing of 0.114(2) fm. For this pion mass and finite lattice volume theΩ− is stable.
The lattice spacinga, the light u and d and the strange quark mass were fixed by an iterative
procedure using theΩ−, the pion and the kaon masses [4]. For the present calculations we use 200
well separated dynamical domain-wall fermion gauge configurations [4].It is known that the chiral
symmetry breaking falls exponentially with the length of the fifth dimensionN5 of the DWF-action.
The valueN5 = 16 used here is adequate to keep the residual mass sufficiently small.

3.1 Interpolating fields

In order to calculate theΩ− matrix element we need to evaluate the appropriate two- and
three-point correlation functions. An interpolating field operator with the quantum numbers of the
Ω− hyperon is given by

JΩ(x) = εabcsa
α

(

sTb
β [Cγσ ]βγ sc

γ
)

, (3.1)

whereC = γ4γ2 is the charge-conjugation matrix andσ is the vector index of the spin-3/2 spinor.
In order to ensure ground state dominance for
the shortest time evolution we perform a gauge
invariant Gaussian smearing, as described in
Refs. [5, 6], on the quark fieldss that enter in the
interpolating field:

qβ (t,~x) = ∑
~y

[1+αH(~x,~y;U)]n qβ (t,~y),

H(~x,~y;U)=
3

∑
µ=1

(

Uµ(~x, t)δ~x,~y−µ̂ +U†
µ(~x− µ̂, t)δ~x,~y+µ̂

)

,

whereq (q) is the smeared (local) fermion field.
The linksUµ(~x, t) entering the hopping matrixH
are APE-smeared gauge fields.
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Figure 1: TheΩ− effective mass and the fit to
the plateau plotted against time separation.

For the lattice spacing considered here we have used the Gaussian smearing parametersα =

5.026 andn = 40, which have been optimized for the nucleon state. In Fig. 1 we show theΩ−

effective mass, calculated from the two-point function ratio defined bymΩ
e f f(t) = − log[G(t +

1,~0)/G(t,~0)]. It displays a nice plateau yieldingmΩ = 1.76(2) GeV. This value is 5% higher
than the experimental one. This may reflect a slightly larger value for the strange quark mass as
compared to the physical one.

3.2 Two- and three-point Correlation functions

The electromagnetic form factors are extracted by constructing appropriate combinations of
two- and three-point correlation functions. The corresponding lattice correlation functions are
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given by

G(t f ,~q) = ∑
~xf

3

∑
j=1

e−i~xf ·~q Γ4
αβ 〈Jjβ (xf )J jα(0)〉, (3.2)

G µ
σ τ(Γν , t,~q) = ∑

~xf~x

ei~x·~qΓν
αβ 〈Jσβ (xf ) jµ

EM(x)Jτα(0)〉, (3.3)

whereΓ4 = 1
4

(

1+ γ4
)

andΓk = iΓ4γ5γk, with the Diracγ-matrices taken in Euclidean spacetime.
We calculate the above three-point correlation function in a frame where thefinal Ω− state is at
rest,~pf =~0, while the operatorjµ

EM is inserted at timet carrying a momentum~q = −~pi .
The leading time dependence and unknown overlaps of theΩ− state with the initial statēJΩ|0〉

in the three-point correlation function can be canceled out by forming appropriate ratios of the
three-point function and two-point functions. A particularly suitable ratio isdefined by

R µ
σ τ(Γ,~q, t) =

G µ
σ τ(Γν ,~q, t)

Gkk(Γ4,~0, t f )

√

Gkk(Γ4,~pi , t f − t)Gkk(Γ4,~0, t)Gkk(Γ4,~0, t f )

Gkk(Γ4,~0, t f − t)Gkk(Γ4,~pi , t)Gkk(Γ4,~pi , t f )
, (3.4)

where a summation over the repeated indicesk (k = 1,2,3) is assumed. For large Euclidean time
separations this ratio becomes time-independent (plateau region)

R µ
σ τ(Γ,~q, t)

t f−t≫1,t≫1
−→ Π µ

σ τ(Γ,~q) = C Tr [ΓΛσσ (pf )O
σ µτΛττ(pi)] , (3.5)

C =

√

3
2

[

2EΩ(~q)

mΩ
+

2E2
Ω(~q)

m2
Ω

+
E3

Ω(~q)

m3
Ω

+
E4

Ω(~q)

m4
Ω

]− 1
2

. (3.6)

It is understood that the trace acts on spinor-space, while the Euclideanized version of the Rarita-
Schwinger spin sum is given by

Λστ(p) ≡ ∑
s

uσ (p,s)ūτ(p,s) = −
−i/p+mΩ

2mΩ

[

δστ −
γσ γτ

3
+

2pσ pτ

3m2
Ω

− i
pσ γτ − pτγσ

3mΩ

]

. (3.7)

The electromagnetic form factors are extracted by fitting to the plateau regionof a set of
specially chosen combinations of three-point functions given below

3

∑
k=1

Π µ
k k(Γ

4,~q) = K1 GE0(Q
2)+K2 GE2(Q

2), (3.8)

3

∑
j,k,l=1

ε jkl Π
µ
j k(Γ

4,~q) = K3 GM1(Q
2), (3.9)

3

∑
j,k,l

ε jkl Π 4
j k(Γ

j ,~q) = K4 GE2(Q
2). (3.10)

The continuum kinematical coefficientsKi (i = 1,2,3,4), have been calculated in Ref. [7] and are
functions of theΩ− mass, the energyEΩ, the space-time indexµ and the momentum~q. Further-
more, it is readily seen that the subdominant electric quadrupole form factor GE2 is isolated by
the combination provided by Eq. (3.10). In addition, these expressions are such that all possible
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directions ofµ and momentum~q contribute in a symmetric fashion at a given momentum transfer
Q2. In other words, the optimal combinations ofΠ µ

σ τ(Γ,~q) employed are those that maximize the
number of nonzero~q contributions in a lattice rotationally invariant way [8].

We calculate only the connected contributions to the three-point function by performing se-
quential inversions through the sink. This means that we need to fix the quantum numbers of the
initial and final states and explains why we consider optimal combinations. Otherwise, one would
have to prepare a new set of sequential inversions for every choice of vector and Dirac indices,
which is prohibited in a lattice computation given the fact that we have to consider an overall of
σ ×β × τ ×α = 256, combinations by looking the index structure of Eq. (3.3). Having the matrix
element for all the different directions of~q and for all four directionsµ of the current, we form
an over-constrained system of linear equations (in terms of form factors), which is solved by em-
ploying asingular value decompositionanalysis. This procedure yields the electromagnetic form
factorsGE0, GM1 andGE2. The statistical errors are found by a jack-knife analysis, which takes
care of the correlations of lattice measurements of the ratios.

As already mentioned the three-point function of the connected part is calculated by perform-
ing sequential inversions through the sink. This requires to fix the temporalsource-sink separation.
In order to determine the smallest time separation that is still sufficiently large to damp the excited
state contributions we perform the calculation at two values of the sink-source separation, namely
t f /a = 8 andt f /a = 10. We compare in Fig. 2 the results for the plateausΠ µ

σ τ(Γ,~q), for a few
selected directions of the current and for low momentum~q values for these two sink-source time
separations. As can be seen, the plateaus values att f /a = 10 are consistent with the smaller time
separation having about half the statistical error. We therefore uset f /a= 8 or t f = 0.91 fm in what
follows.

4. Results

We use the local electromagnetic current,jµ
EM = −1

3s̄γµs, which requires a renormalization
factor ZV to be included. This renormalization constant is determined by the requirementthat
GE0 at zero momentum transfer is equal to the charge ofΩ− in units of electric charge, that is
GE0(0) ≡ −1. Our calculation, at this quark mass, yields a value ofZV = 0.727(1), which is
reasonably close to the value obtained in Refs. [9, 4] in the chiral limit.

4.1 Electric charge form factor

Our results for the electric charge form factor,GE0, are depicted in Fig. 3(a). As can be seen,
the momentum dependence of this form factor is described well by a dipole form

GE0(Q
2) = −

1
(

1+ Q2

Λ2
E0

)2 , (4.1)

with Λ2
E0 a fit parameter. In the non-relativistic limit the slope of the above dipole form evaluated

at momentum transferQ2 = 0, is related to the electric charge root mean square (rms) radius

〈

r2
E0

〉

= −6
d

dQ2GE0(Q
2)

∣

∣

∣

∣

Q2=0
. (4.2)
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Figure 2: The ratioR µ
σ τ(Γ,~q, t) extracted for temporal source-sink separationst f /a= 8 andt f /a=

10, using 50 gauge configurations. The results fort f /a = 10 are shifted to the left by one unit.
We show results for current directionsµ = 1,2,3 and low-momenta~q: (0,1,0)2π

L and(1,0,0)2π
L ,

respectively.

From our dipole fit to the lattice data we determineΛE0 and obtain a value of〈r2
E0〉=−0.354(9) fm2.

This is slightly greater in magnitude than the one reported in Ref. [10], which was obtained in a
quenched lattice QCD calculation (see Table 1). Our value is expected to be higher since in a dy-
namical lattice calculation meson-cloud effects are taken into account in addition to the fact that in
Ref. [10] a heavy pion mass has been used.

4.2 Magnetic dipole form factor

Lattice results on the magnetic dipoleGM1 are shown in Fig. 3(b). As in the case ofGE0, a
dipole fit describes very well theQ2-dependence ofGM1. Fitting to the form

GM1(Q
2) = −

GM1(0)
(

1+ Q2

Λ2
M1

)2 (4.3)

we can extract the anomalous magnetic moment of theΩ−. By utilizing the lattice computedΩ
mass, from Table 1, we calculate the magnetic moment in nuclear magnetons by using the relation

µΩ− = GM1(0)
e

2mΩ
= GM1(0)

mN

mΩ
µN. (4.4)

Our value ofµΩ− in nuclear magnetonsµN is given in Table 1 and it is in agreement with the
experimental value. It is also in agreement with two recent lattice calculations [10, 11]. The
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Figure 3: (a) The electric charge form factorGE0 at mπ = 330 MeV. The line describes the dipole
fit given in Eq. (4.1). (b) The magnetic dipole form factor,GM1, along with the dipole fit as given
in Eq. (4.3) atmπ = 330 MeV. The experimental datum for the magnetic dipole form factor,
GM1(0) = −3.60(8) GeV2 [1], is also shown.

calculation in Ref. [10] is similar to ours in the sense that the three-point correlation function is
calculated but the evaluation is carried out in the quenched theory and onlyat one value ofQ2.
In Ref. [11] one employs a background field method to compute energy shifts usingNF = 2+ 1
Clover fermions at pion mass of 366 MeV on an anisotropic lattice.

Vol. Nconf. mπ mΩ GM1(0) µΩ− 〈r2
E0〉

[MeV] [GeV] [GeV2] [ µN] [fm2]

this work 243×64 200 330 1.763(21) -3.58(10) -1.92(6) -0.354(9)
ref. [10] 203×40 400 697 1.732(12) – -1.697(65) -0.307(15)
ref. [11] 243×128 213 366 1.650 – -1.93(8) –

ref. [1] [PDG] – – – 1.672(45) -3.60(8) -2.02(5) –

Table 1: TheΩ− massmΩ, the magnetic dipole form factorGM1 at Q2 = 0, the magnetic momentµΩ− and
the electricrmscharge radius〈r2

E0〉.

5. Summary

Using appropriately constructed sequential sources the dominantΩ− electromagnetic form
factorsGE0 andGM1 are calculated with good accuracy even with a small sample of dynamical
domain-wall fermion configurations. In the current calculation we neglected disconnected contri-
butions.
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The Ω− magnetic moment is extracted by fitting the magnetic dipole form factorGM1 to a
dipole form. We find a value that is in agreement with experiment [1]. The electric rms charge
radius〈r2

E0〉 is also computed and found to be larger than the value obtained in quenched QCD [10].
We have also preliminary results on the subdominant electric quadrupole form factor GE2

using the source of Eq. (3.10) but with our current statistics the errors are still large and no definite
conclusion can be drawn.

We will check for cut-off effects by performing the calculation of the formfactors using dy-
namical domain-wall fermion configurations at a finer lattice spacing. Although the light quark
mass dependence is expected to be small, this needs to be checked at another, preferably smaller,
value of the pion mass.
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