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1. Introduction

Form factors measured in electromagnetic and weak processes are fundamental probes of
hadron structure. Calculations of such observables using lattice QCD and, in particular, the nu-
cleon form factors [1, 2, 3] has intensified during the last couple of years due to improvements
which allow full lattice QCD calculations with controlled lattice systematics [4]. The focus of the
current work is the study of the electro-magnetic (EM) and weak N to∆ transition form factors
(FFs). Experiments on the N to∆ EM transition have yielded accurate results on the EM transition
form factor for low momentum transfer [5] that point to deformation of the N/∆ system. The axial
N to ∆ transition FFs are experimentally not well known but there are ongoing experiments using
electroproduction of the∆ resonance to measure the parity violating asymmetry in N to∆. Lattice
QCD enables calculation of these fundamental quantities from first principle. Our previous calcu-
lation of these form factors utilized quenched and dynamical Wilson as well as a hybrid scheme
with domain wall (DWF) valence quarks on an improved staggered sea [6, 7, 8]. A study of the
N to ∆ transition using chiral dynamical quarks in a unitary approach is presented in this work
where, in addition, we employ the coherent sink method [2] in order to achieve the better statistical
accuracy on the determination of the form factors.

2. Lattice Techniques

We useNF = 2+ 1 dynamical domain wall fermions generated by the RBC and UKQCD
collaborations [9]. The lattice spacinga−1 = 1.73(3) GeV is fixed using theΩ− mass. The length of
the fifth dimension is taken sufficiently large to suppress chiral symmetry breaking. FixingL5/a =

16 gives an additive residual mass∼ 10% of the light quark mass used in this work. We consider
configurations on a lattice of size 243×64 corresponding to pion mass of 0.331(1) GeV. We use the
standard interpolating operators to create nucleon and∆ states and employ gauge invariant gaussian
smearing of the quark fields with APE-smeared gauge fields optimized for best suppression of
excited states for the nucleon [3]. Suppressing excited state contributionsin the three-point function
is particularly crucial since for this study a source-sink separation of 0.9fm is used. We show in
Fig. 1 that extending the source-sink separation to 1.14 fm the plateau values for the dominant
dipole form factorGM1, which are the most accurate, are consistent with a time-separation of
0.9 fm, but with a two-fold increase in statistical errors.

The three-point functions that are needed are given by

〈G
∆Jµ N
σ (t2, t1;p ′,p;Γτ)〉 = ∑

x2, x1

e−ip′·x2e+iq·x1 Γβα
τ 〈Ω|T

[

χσα
∆ (x2, t2)Jµ(x1, t1)χ̄β

N (0,0)
]

|Ω〉 (2.1)

whereJµ(x) is a local current,q = p′−p is the momentum transfer,σ is the Lorentz vector index
for the∆ andΓτ projection matrices in Dirac space [7]. The large Euclidean time limit of the ratio

RJ
σ (t2, t1;p ′,p ;Γτ ; µ)=

〈G
∆Jµ N
σ (t2, t1;p ′,p;Γ)〉

〈G∆∆
ii (t2,p ′;Γ4)〉

[

〈G∆∆
ii (t2,p ′;Γ4)〉

〈GNN(t2,p;Γ4)〉

〈GNN(t2− t1,p;Γ4)〉 〈G∆∆
ii (t1,p ′;Γ4)〉

〈G∆∆
ii (t2− t1,p ′;Γ4)〉 〈GNN(t1,p;Γ4)〉

]1/2

(2.2)

yields a time-independent functionΠσ (p ′,p ;Γτ ; µ) (plateau region). In addition, all field renor-
malization constants cancel and thereforeΠσ is a combination of the Lorentz invariant form factors
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and known kinematical factors. We use sequential inversions through thesink to evaluate the three-
point function of Eq. (2.1). In this method the quantum numbers of the hadron are fixed, which
means that a particular value ofσ andΓτ must be chosen. This freedom is exploited in the construc-
tion of sources for the sequential propagator with the goal to produce optimal linear combinations
of Πσ involving a maximal set of momentum vectors, thereby obtaining a maximum number of
statistically independent measurements [6]. It turns out that three such sinks suffice for achieving
this goal and enable us to extract the momentum dependence of the electromagnetic, axial and
pseudoscalar N to∆ FFs accurately. A new ingredient of the current work is the use of thecoherent
sink technique [2] in order to reduce the statistical noise. This consists of creating four sets of
forward propagators for each configuration by placing sources at:
(~0,0), (~L/2,16), (~0,32) and (~L/2,48).
From each source(~xi,Ti), a zero-momentum projected∆ source is constructed atT0 away, i.e. at
(~xi,Ti + To) and a single coherent backward propagator is calculated in the simultaneous presence
of all four sources. The cross terms that arise vanish by gauge invariance when averaged over
the ensemble. The forward propagators are already computed by the LHPC Collaboration [2] and
therefore we effectively obtain four measurements at the cost of one. This assumes large enough
time-separation between the four sources to suppress contamination among them. An open ques-
tion is whether there exists correlation among these four measurements. In Fig. 2 we show the
dependence of the jackknife error onGM1 for different coherent sink bin sizes, which verifies that
cross-correlations between the different sinks are absent.

The full set of data obtained at a givenQ2 value is analyzed simultaneously by a globalχ2

minimization using the singular value decomposition of an overconstrained linearsystem [6]. All
the results presented here are obtained by analyzing 200 configurationsor a total of 200×4 = 800
measurements of the ratio given in Eq. (2.2).

1

2

q2 = 1*(2 /L)2 q2 = 2*(2 /L)2 

t/a t/a

0 1 2 3 4 5 6 7 8 9 10 11

0,8

1,2

q2 = 3*(2 /L)2 

0 1 2 3 4 5 6 7 8 9 10 11 12

q2 = 4*(2 /L)2 

Figure 1: The ratioS1 of Eq. (3.2) versust/a for
a source-sink separation 0.91 fm shifted by a time
slice (blue triangles) and 1.14 fm (red circles) for the
smaller non-zero~q2.

Figure 2: Dependence of the jackknife error for
GM1(Q2) on the coherent sink bin sizes.

3



P
o
S
(
L
A
T
2
0
0
9
)
1
5
6

N to ∆ transition form factors with NF = 2+1 domain wall fermions A. Ó Cais

3. Electromagnetic N to ∆ Transition form factors

The electromagnetic transition matrix element is decomposed in terms of three Sachs (FFs)

〈∆(p′,s′)| jµ |N(p,s)〉 = i

√

2
3

(

m∆ mN

E∆(p′) EN(p)

)1/2

ūσ (p′,s′)Oσ µu(p,s) (3.1)

with
Oσ µ = GM1(q

2)KM1
σ µ +GE2(q

2)KE2
σ µ +GC2(q

2)KC2
σ µ

whereKM1
σ µ ,KE2

σ µ andKC2
σ µ are known kinematical factors [7]. In this work we present results for

the dominant magnetic dipole form factorGM1(q2). Following Ref. [7] we construct the optimized
three-point functionS1 from whichGM1(Q2) is directly determined

S1(q; µ) =
3

∑
σ=1

Πσ (0,−q ;Γ4; µ) = iA

{

(p2− p3)δ1,µ +(p3− p1)δ2,µ +(p1− p2)δ3,µ

}

GM1(Q
2) .

(3.2)
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Figure 3: GM1(Q2) using DWF fermions and using
the hybrid action. The diamonds show experimental
results. The solid (dashed) line is a fit to dipole (ex-
ponential) form for the DWF data.
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Figure 4: CA
5 for DWF, the hybrid action and

quenched Wilson fermions (mπ = 410 MeV) [6].
The green line is a dipole fit to experimental
data [10]. The solid (dotted) line is a fit to dipole
(exponential) form of the DWF data.

In Fig. 3 we show the results of this work onGM1(Q2) using DWF. These are compared
with previous results obtained with a hybrid action that uses Asqtad improved staggered fermions
generated by the MILC collaboration and domain wall valence quarks [7].The pion mass in the
DWF calculation is 331 MeV and in the hybrid action 350 MeV. These values are close enough to
allow a direct comparison. Indeed the results are in very good agreement.Fits to a dipole form,
g0/(1+ Q2/m2

0)
2, as well as to an exponential form ˜g0 exp(−Q2/m̃0

2) described equally well the
lattice results. A compilation of the experimentally available data (for more details see Ref. [7]) is
also shown in Fig. 3 showing a clear disagreement between lattice results andexperiment. This is
reflected in the value of the dipole mass ofm0 = 0.78 GeV obtained by performing a dipole form
fit to the experimental data as compared tom0 = 1.164(20) GeV for the lattice results. A possible
explanation for the faster falloff of the experimental data maybe the lack of significant chiral quark
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effects –or equally the lack of strong pion cloud– from the still heavy pion mass ensembles that are
utilized. Similar behavior is also observed for the nucleon electromagnetic form factors [1], that
may again point to the importance of chiral quark effects. The N to∆ case is particularly clean
since there is no ambiguity regarding disconnected contributions and thus theflatter dependence
observed in the N to∆ EM FFs must be of different origin. The large disagreement observed here,
however, would require large pion cloud effects to set in as we lower the pion mass. Such large
pion effects have been shown to arise in chiral expansions [11] and it isthus interesting to perform
the calculation formπ < 250 MeV where they are expected to set in. We are currently analyzing
results to extract the subdominant FFs,GE2 andGC2 using the same DWF configurations.

4. Electroweak N to ∆ Transition form factors and Goldberger-Treiman relations

We consider nucleon to∆ matrix elements of the axial and pseudoscalar currents defined by

Aa
µ(x) = ψ̄(x)γµγ5

τa

2
ψ(x) , Pa(x) = ψ̄(x)γ5

τa

2
ψ(x) (4.1)

whereτa are the three Pauli-matrices acting in flavor space andψ the isospin doublet quark field.
The invariant proton to∆+ weak matrix element is expressed in terms of four transition form factors
in the Adler representation as

< ∆(p′,s′)|A3
µ |N(p,s) > = i

√

2
3

(

m∆mN

E∆(p′)EN(p)

)1/2

ūλ
∆+(p′,s′)

[(

CA
3 (q2)

mN
γν +

CA
4 (q2)

m2
N

p′ν
)

(

gλ µgρν −gλρgµν
)

qρ +CA
5 (q2)gλ µ +

CA
6 (q2)

m2
N

qλ qµ

]

uP(p,s). (4.2)

The form factorsCA
3 (q2) andCA

4 (q2) belong to the transverse part of the axial current and are both
suppressed [8] relative to the dominant form factorsCA

5 (q2) andCA
6 (q2). The latter two are the

equivalent to the nucleon axial FFsGA(Q2) andGp(Q2) respectively [6].
The pseudoscalar transition form factorGπN∆(q2), is defined via

2mq < ∆(p′,s′)|P3|N(p,s) >= i

√

2
3

(

m∆mN

E∆(p′)EN(p)

)1/2 fπ m2
π GπN∆(q2)

m2
π −q2 ūν

∆+(p′,s′)
qν

2mN
uP(p,s) . (4.3)

Taking matrix elements of the axial Ward-Takahashi identity∂ µAa
µ = 2mqPa leads to the non-

diagonal Goldberger-Treiman (GT) relation

CA
5 (q2)+

q2

m2
N

CA
6 (q2) =

1
2mN

GπN∆(q2) fπm2
π

m2
π −q2 . (4.4)

The PCAC relation on the hadronic level∂ µAa
µ = fπm2

ππa, relates the pseudoscalar current to the
pion field operator and therefore provides the connection to the phenomenological πN∆ strong
couplinggπN∆ = GπN∆(0) that appears in Eq. (4.4). Assuming pion pole dominance we can relate
the form factorCA

6 to GπN∆ via:

1
mN

CA
6 (q2) ∼

1
2

GπN∆(q2) fπ

m2
π −q2 (4.5)
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Substituting in Eq. (4.4) we obtain the simplified Goldberger-Treiman relation

GπN∆(q2) fπ = 2mNCA
5 (q2) (4.6)

in complete analogy to the well known GT relation which holds in the nucleon sector. Pion pole
dominance therefore fixes completely the ratioCA

6 (q2)/CA
5 (q2) as a pure monopole term

CA
6 (q2)

CA
5 (q2)

=
m2

N

m2
π −q2 . (4.7)

The goal here is to calculateCA
5 (q2), CA

6 (Q2) and GπN∆(Q2) and check the GT relations using
dynamical DWF. The relevant three-point functions required for the calculation of these FFs are
obtained at aminimal extra cost using the sequential propagators produced from the optimized
nucleon to∆ sourceS1 and in additionS2 which is also used for the electromagnetic transition
study of the subdominant FFs. The detailed expressions are given in Ref. [6].
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 Hybrid m =0.35 GeV
 DWF   m =0.33 GeV
 N

F
=0 Wilson m =0.41GeV

C
 A 6

/C
 A 5

Q2 (GeV2)

Figure 5: The ratioCA
6 /CA

5 versusQ2. The dotted
line refers to the DWF results and is the pion pole
dominance prediction of Eq. (4.5). The solid line is a
fit to a monopole form.
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Figure 6: Q2-dependence of the pseudoscalar tran-
sition form factorGπN∆. The solid line is a fit to
pion pole dominance form of Eq.(4.9). The dashed
line is a linear fit. The strong coupling constant
gπN∆ is the value atQ2 = 0.

In Fig. 4 we compare our results forCA
5 using DWF to those obtained previously using the hy-

brid action and quenched Wilson fermions at similar pion masses [6, 8]. TheQ2 dependence is well
described by a dipole Ansatz yieldingCA

5 (0) = 0.970(30) and a dipole massmA = 1.588(67) GeV.
This is to be compared with the valuemA = 1.28±0.10 GeV extracted by a dipole fit to the avail-
able experimental data [10]. As in the case ofGM1(Q2), we observe a flatter slope for the lattice
data, reflected in the larger value of the axial massmA extracted for the lattice results.

In Fig. 5 we show the ratioCA
6/CA

5 . The dotted line shows the pion pole dominance prediction
of Eq. (4.7) where formN andmπ we use the lattice values calculated for DWF. The predicted
curve does not describe the data at lowQ2 i.e. in the regime where strong pion cloud effects are
expected. Fitting to a monopole formc0/(Q2/m2 +1) describes satisfactorily the ratio yielding a
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heavier mass parameterm than the lattice value of the pion mass. This behavior has been observed
also for the other actions [6].

The pseudoscalar form factorGπN∆(q2) is determined optimally from the sourceS1 with a
pseudoscalar current operator insertion:

SP
1(q ; γ5) =

3

∑
σ=1

ΠP
σ (0,−q ;Γ4;γ5) =

√

2
3

√

EN +mN

EN

[

q1 +q2 +q3

6mN

fπ m2
π

2mq(m2
π +Q2)

]

GπN∆(Q2) (4.8)

We use the valuefπ = 0.1052(7) GeV for the pseudoscalar pion decay constant determined in
Ref. [9]. The quark massmq is calculated through the Axial Ward Identity by constructing a suit-
able ratio of local-smeared and smeared-smeared two-point functions of the axial and pseudoscalar
currents [6]. This requires only knowledge of the axial current renormalizationZA, which is deter-
mined to beZA = 0.7197(9) (Yamazakiet al in [1]), where alsoZV = ZA holds up to a smallO(a2)

error for a chiral action [9].
In Fig. 6 we compare results onGπN∆(q2) using dynamical DWF to those obtained with the

hybrid action and in the quenched theory [6]. The solid line is a one-parameter fit to the form

GπN∆(Q2) = K
Q2/m2

π +1

(Q2/m2
A +1)2(Q2/m2 +1)

(4.9)

expected if the validity of Eq. (4.7) is assumed. The fit-parameterK provides an estimate of the

strong couplinggπN∆ = GπN∆(0) = 9.6(2). A straight line fit of the formGπN∆(Q2) ∼

(

1−∆ Q2

m2
π

)

as shown by the dashed line, would lead to an estimategπN∆ = 13.9(6). Thus a reliable evaluation
of gπN∆ requires further understanding of the behavior at lowQ2 and in particular of the decrease
observed in the hybrid action atQ2 close to zero.
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Figure 7: The ratio fπ GπN∆(Q2)/mNCA
5 (Q2) as a

function ofQ2 relating to the GT validity.
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 DWF    m =0.33 GeV
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F
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Figure 8: The ratio mN fπ GπN∆(Q2)/2(m2
π +

Q2)CA
6 (Q2) that relates to the validity of Eq. (4.5).

In Fig. 7 we show the ratiofπGπN∆(Q2)/mNCA
5 (Q2), which should be unity if the non-diagonal

GT relation of Eq. (4.6) is satisfied. Deviations from this relation are evidentin the lowQ2 regime
and they are present for all actions to the same degree which is surprisingsince one might have
expected a better behaviour for DWF. At higher momentum transfers (Q2 > 0.5 GeV2) the relation
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is satisfied for all actions. On the other hand, the relation given in Eq. (4.7)that assumes pion pole
dominance to relateCA

6 to CA
5 is satisfied excellently by the lattice data for all three actions. This

agreement is shown in Fig. 8 where the ratiomN fπGπN∆(Q2)/2(m2
π + Q2)CA

6 (Q2) is everywhere
consistent with unity.

5. Summary and Conclusions

The nucleon to∆ electromagnetic, axial and pseudoscalar transition form factors are calculated
using N f = 2+ 1 dynamical domain wall fermions for pion mass of 0.33 GeV. The dominant
form factorsGM1 andCA

5 show slower falloff withQ2 as compared to experiment. A possible
explanation maybe that the pion cloud is still not fully developed, at pion mass of 0.33 GeV. We
examined the Goldberger-Treiman relations and found that they are satisfied for Q2 > 0.5 GeV2 as
was previously observed for Wilson fermions and when using a hybrid action. Pion pole dominance
relating the axial form factorCA

6 and the pseudoscalar form factorGπN∆ is satisfied for all values of
Q2 irrespective of the lattice action used. Extraction of the strong coupling constantgπN∆ requires
special care since we need a better understanding of the lowQ2 behavior of the pseudoscalar matrix
element. A calculation on a finer lattice using domain wall fermions is underway to check for any
cut-off effects as well as obtain results on the subdominant and phenomenologically interesting
electromagnetic quadrupole form factors.
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