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On the analytic continuation of the critical line Alessandro Papa

1. Introduction

The study of QCD at non-zero baryon density by numerical simulationspaee-time lattice
is plagued by the well-known sign problem: the fermion determinant is compléxhenMonte
Carlo sampling becomes unfeasible. One of the possibilities to circumvent tiigepr is to
perform Monte Carlo numerical simulations for imaginary values of the bechemical potential,
where the fermion determinant is real and the sign problem is absent, arfdrithim behavior at
real chemical potential by analytic continuation. The idea of formulating ayretdmaginaryu
was first suggested in Ref] [1], while the effectiveness of the methadalftic continuation was
pushed forward in Ref[[2]. Since then, the method has been extBnayalied to QCD [B£10]
and tested in QCD-like theories free of the sign problerh [L1 — 16] and imspdtels [1f7[ 18]. The
state-of-the-art is the following:

- the method is well-founded and works fine within the limitations posed by thepcesof
non-analyticities and by the periodicity of the theory with imaginary chemicahpiaidfL9];

- the analytic continuation of physical observables is improved if ratioslghpmials (or Padé
approximants[[20]) are used as interpolating functions at imaginary chigpoieantial [13[1}];

- the analytic continuation of the (pseudo-)critical line on the temperature@miclal poten-
tial plane is well-justified, but a careful test in two-color QCD][14] has sasne doubts on its
reliability.

In particular, the numerical analysis in two-color QCD of REf] [14] hasshthat, while there
is no doubt that an analytic function exists which interpolates numerical olattaef pseudo-critical
couplings for both imaginary and realacrossu = 0, determining this function by an interpolation
of data at imaginary could be misleading. Indeed, in the case of polynomial interpolations, there
is a clear indication in two-color QCD that non-linear termgifnplay a relevant role at real, but
are less visible at imaginayy, thus calling for an accurate knowledge of the critical line there and,
consequently, for very precise numerical data. The above desatleadrio could well be peculiar
to two-color QCD and strongly depend on the choice of parameters of[[REf. Therefore, in
this work we perform a systematic study of the analytic continuation of the ditigain another
sign-free theory, SU(3) with a non-zero density of isospin. The digrece on the fermion mass
in two-color QCD is considered in a separate contributjoh [21]. The aimigftudy is to single
out some general features of the analytic continuation of the critical linécandderstand if and
to what extent they can apply also to the physically relevant case of QCD.

2. Analytic continuation of the critical line in three-color QCD at finite isospin
chemical potential

Three-color QCD with a finite density of isospin charfid [22] is a theory iitivthe chemical
potential isu for half of the fermion species andu for the other half. The partition function,
which is even inu and depends only oa?, can be written as follows:

Z(T,u) = /@Ue‘SG detM[u]detM[—p] , (2.1)

where the integration is over gauge link variabl&s,is the pure gauge action ail the fermion
matrix (we adopt a standard staggered discretization). This leads to ancglositive measure,
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Figure 1: (Left) Distribution of the real part of the Polyakov loop itU&) with finite isospin density on a
82 x 4 lattice witham=0.1 atu?/(niT)?=0.16 and for threg values around the transition. (Right) Critical
couplings obtained in SU(3) with finite isospin density on®ax84 lattice withan=0.1, together with a
polynomial fit of orderu® to all data.

because of the property ddf—u| = (detM[u])*, and therefore to a theory free of the sign problem.
This theory is obviously closer to real QCD than two-color QCD, being yehysical, since it
implies a zero baryon density, while in Nature a non-zero isospin densitw&y/slaccompanied
by a non-zero baryon density; moreover the isospin charge is notseie@u number in the real
world. Nevertheless, for our purposes this theory is very convemsiect it provides us with
another theoretical laboratory for the method of analytic continuation.

Similarly to SU(2) with finite baryon density, at imaginary values of the chemiotdrgial u
the theory exhibits RW-like transition lines, the first RW sector being givethegtrip—(0.5)2 <
u?/(mT)? < 0 (we refer to Ref.[[43] for a detailed discussion of the QCD phasealiagr presence
of an imaginary isospin chemical potential).

In our numerical analysis, we consider finite isospin SU(3) With= 8 degenerate staggered
fermions of masam= 0.1 on a & x 4 lattice. The critical line in the temperature — chemical
potential plane is a line of (strong) first order transitions, over all theshnyated range ofi?
values,—0.2304< [.12/(7'[T)2 < 0.2025. This is one of the reasons for working on a small volume
(tunneling between the different phases would have been sampled with mmarehdifficulty on
a larger volume) and clearly emerges from the distribution on the thermal equiliensemble
of the values of observables like the (real part of) the Polyakov loapchfiral condensate, the
plaquette across the transition (see, for example,[Fig. 1(left)). Typgitidtics have been around
10K trajectories of 1 MD unit for each run, growing up to 100K trajectofis2-3 3 values
aroundB(u?), for eachu?, in order to correctly sample the critical behavior at the transition. The
critical B(u?) is determined as the point where the two peaks have equal height andhimedises
considered, this point turned out to be the same for all the adopted abtesy

2.1 Results for the critical line at finite isospin

The general strategy is the following: after determining, for a sqi%falues, the critical
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Figure 2: (Left) Critical couplings obtained in SU(3) with finite iquis density on a 8x 4 lattice with
ame0.1, together with a polynomial fit of ordg® to data withu? < 0. (Right) The same with a polynomial
of orderu® with constrained quadratic term.

couplingsB.(u?), the critical line is guessed by interpolating the valueg®fi?) for u? < 0 only.
The validity of the interpolation is evaluated by comparing its analytic continuatitimetoegion
u? > 0 with the direct determinations of the critical coupling in this redion

We observe from the very beginning that data fa(u?) for both y? < 0 andp? > 0 can
be globally fitted by an analytic function (a polynomial of third ordeusy (7T )? nicely works).
Fig. [@(right) shows how the fit compares with data. The question is if therimtrpolations of the
critical couplings au? < 0 only, that, when continued f@? > 0, agree with the critical couplings
directly determined in the latter region.

We have tried several kind of interpolations of the critical couplingaZt 0. At first, we
have considered interpolations with polynomials up to opd€r We can see that datajat < 0 are
precise enough to be sensitive to terms beyond the prijéndeed, a googt?/d.o.f. is not achieved
before including terms up to the ordef, in agreement with the outcome of the global fit discussed
above. The extrapolation 1o > 0 for the polynomial of ordeu® is shown in Fig[[2(left); it agrees
with direct determinations g8.(u?), within the 95% CL band.

Then, we have considered interpolations with ratios of polynomials of angléo . In all
but one cases we got good fits to the data%t 0, but only two extrapolations tp? > 0 compare
well with numerical data in that region: the ratio of a 4th to 6th order polynomiaithe ratio of
a 6th to 4th order polynomial [R3]. It is interesting to observe that the twogotations which
“work” have in common the number of parameters.

Both kinds of fits considered so far have evidenced that the role of terorgler larger than
u? cannot be neglected. Since the data more sensitive to these terms arattiesdromu? = 0,
while data closer tq? = 0 should “feel” only theu? term in a polynomial interpolation, we per-
formed a fit with a polynomial of the forrag 4 ay u?/(7T)? in a small regioru? < 0 and fixed the
value of the parametex; (see Ref.[[33] for details). Then, we ket fixed and repeated the fit

1We refer to Ref. ES] for all the determinations of the critical couplings i fihite isospin SU(3) theory on a
82 x 4 lattice with fermion masam=0.1 and for the parameters of all the fits presented below.
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Figure 3: Values of B(u?) in SU(3) with finite isospin density on && 4 lattice witham=0.1, together
with the fit to data withu? < 0 according to the fit functiong (2.3)(left) ar{d {2.4)(right

on all available data gu? < 0 with a polynomial of the formag + aju?/ (7T )2 4 au®/(1T)* +
agu®/(nT)8. The resulting interpolation and its extrapolation to the regidn> 0 are shown in
Fig.2(right). The comparison with critical couplingstet > 0 is good and the 95% CL band is nar-
rower than in the unconstrained-polynomial fit (see Fig[]2(right)), meaning that this procedure
leads to increased predictivity for the method of analytic continuation.

At last, we have attempted the fit strategy to write the interpolating functiphysical units
and to deduce from it the functional dependencgobn u?, after establishing a suitable corre-
spondence between physical and lattice units. The natural, dimensioalégses of our theory
areT /T¢(0), whereT¢(0) is the critical temperature at zero chemical potential, aphiT). The
question that we want to answer is if fitting directly the dependende/@§(0) on u/(niT) may
lead to increased predictivity for analytic continuation. We shall name thisdfifits as “physical”
fits. While u/(mT) is one of the dimensionless variables used in our simulatibyi§(0) is not
and must be deduced from the relatibr= 1/(N:a()), whereN; is the number of lattice sites in
the temporal direction analB) is the lattice spacing at a givgh?. Since our determinations for
B range betweenr 4.5585 and~ 4.842, it can make sense to use &) the perturbative 2-loop
expression witiN; = 3 andN; = 8.

We have tried several different fitting functions and report two caseshwvork particularly
well. The first is given by the following 3-parameter function:

To(w)]?  1+Bu?/(mTe(p))?
{TC(O)] T 1+ AU/ (TTe(p))? (2.2)

2strictly speaking the lattice spacing depends also on the bare quark niasis,imvour runs slightly changes as
we changeB since we fixam However in the following evaluation, which is only based on the perturb&@ioop
B-function, we shall neglect such dependence.
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leading to the following implicit relation betweegh and u?:
14+ Apt/(mTe(p))*
= a(f.(0))? .
2—loop ( C( )) 2—loop l+Bu2/(7ﬂ—C(“))2

In Fig.[3(left) we compare to data the fit with the functifn]2.3): one can seehk extrapolation
to the regionu? > 0 behaves very well. The values of the fit parameter3ai@) = 4.6977(13),
A= —3.25(26) andB = —2.62(12), with x?/d.0.f.=1.33.

As an alternative function for the shape of the critical line, we have triedth&sfollowing

To(H) {A+(1—A) [cos(¥)]®, w?<0 (2.4)

a(Be(1?))? (2.3)

Te(0) | A+(1—A)[cosh(¥)]®, u2>0,

which explicitly encodes the expected periodicity of the partition function fogimeary . The fit

to data at imaginary is very good and its extrapolation to the real chemical potential side compares
impressively well with data (see Fig. 3)(right). The resulting fit parameteg; (0) = 4.696912),

A = 1.508(15) andB = 0.560(32), with x?/d.0.f.=0.39. This function is a good candidate to pa-
rameterize the critical line for small valuesjof T.

In both cases, Eq[ (2.3) and Hq.(2.4), the “physical” fit worked veejl and with a reduced
number of parameters with respect to our previous fits, leading to incrgasdictivity and con-
sistency with data at real chemical potentials. One can easily check thatdpted functions are
not appropriate for a continuation of the critical line down toThe 0 axis, but this is not the aim
of our study, since such extrapolation would be questionable anyway.

3. Conclusions

In this work we have presented results concerning the analytic continustiba critical line
in QCD with a finite density of isospin charge. We have detected some featndedeveloped
some strategies, which could apply and be useful for real QCD at finri@balensity. Let us
briefly summarize them.

- Non-linear terms in the dependence of the pseudocritical couping 2 in general cannot
be neglected. A polynomial of ordg® seems to be sufficient in all explored cases.

- The coefficients of the linear and non-linear termgufin a Taylor expansion ofc(u?)
are all negative. That often implies subtle cancellations of non-linear termmaginary chemical
potentials (12 < 0) in the region available for analytic continuation (first RW sector). Theali®on
of such terms, from simulations af < 0 only, may be difficult and requires an extremely high
accuracy. As a matter of fact, the simple use of a sixth order polynomial tatfitat imaginary
leads to poor predictivity, which is slightly improved if ratio of polynomials aredimstead.

- An increased predictivity is achieved if the linear ternuthis fixed from data at small values
of u? only.

- We have proposed a new, alternative ansatz to parameterize the critcdiréietly in phys-
ical units in theT, u plane (instead than in th&, i plane) and given two explicit realizations. This
“physical” ansatz provides a very good description of the critical line, marewith a reduced
number of parameters, and leads to an increased predictivity, comptrdhbg achieved by the
“constrained” fit.
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