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We propose a non-perturbative and gauge invariant derivation of the static potential between a

heavy-quark (Q) and an anti-quark (̄Q) at finite temperature. Thisproper potential is defined

through the spectral function (SPF) of the thermal Wilson loop and can be shown to satisfy the

Schrödinger equation for the heavyQQ̄ pair in the thermal medium. In general, the proper poten-

tial has a real and an imaginary part, corresponding to the peak position and width of the SPF. The

validity of using a Schrödinger equation for heavyQQ̄ can also be checked from the structure of

the SPF. To test this idea, quenched QCD simulations on anisotropic lattices (aσ = 4aτ = 0.039fm,

N3
σ ×Nτ = 202× (96−32)) are performed. The real part of the proper potential below the decon-

finement temperature (T = 0.78Tc) exhibits the well known Coulombic and confining behavior. At

(T = 2.33Tc) we find that it coincides with the Debye screened potential obtained from Polyakov-

line correlations in the color-singlet channel under Coulomb gauge fixing. The physical meaning

of the spectral structure of the thermal Wilson loop and the use of the maximum entropy method

(MEM) to extract the real and imaginary part of the proper potential are also discussed.
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1. Introduction

Heavy quarkonium at finite temperature is a both intriguing and challenging subject. In par-
ticular, its in-medium behavior has been proposed to be a prime signal for the creation of the
quark-gluon plasma (QGP), expected above the critical temperatureTc of the deconfinement tran-
sition [1]. Moreover, the advent of RHIC has made it possibleto access the QGP in the laboratory
[2] and a partial suppression of charmonium has been experimentally confirmed [3].

In the meantime, theoretical understanding has also progressed significantly. Originally, a non-
relativistic Schrödinger equation with screened Coulomb potential was considered for the heavy
QQ̄ pair aboveTc [1]. Later on, more sophisticated potentials were adopted,such as the color-
singlet free-energy of a staticQQ̄ pair and its variants [4]. A main drawback of these approaches is
that there is no firm theoretical foundation to use such potentials within the Schrödinger equation
of a heavyQQ̄ pair in a hot environment.1 A more direct approach to heavy quarkonium at finite
temperatureT is to extract the spectral function (SPF) from lattice QCD simulations with the help
of the maximum entropy method (MEM) [6]. An unexpected feature found subsequently was that
charmonium may survive even above the deconfinement transition up to about 2Tc [7, 8]. However,
a transparent understanding of this result has not been obtained so far.

In light of these circumstances it is imperative to establish a solid connection between the
Schrödinger approach and the spectral function approach, based on a proper definition of the in-
medium potential. A possible way to reach this goal was initially proposed in [9]; the proper
potential to be used in the in-medium Schrödinger equation was defined from the late-time (t)
behavior of the forward correlatorD>(t,R) of a heavyQQ̄ pair separated by distance (R). It was
shown by using hard thermal resummation (HTL) techniques athigh T that the potential has both
a real and an imaginary part. The purpose of the present article is to develop this idea further by
introducing a spectral decomposition ofD>(t,R) (or equivalently the thermal Wilson loop) and to
explore the non-perturbative derivation of the real and imaginary part of the properQQ̄ potential
on the basis of lattice QCD simulations. If this program turns out to be successful, a true physical
understanding of the heavy-quark bound state in the QGP can possibly be obtained.

2. Formulation

2.1 Spectral function for a static QQ̄ pair

We start with theQQ̄ operatorMR(t) defined asMR(t) = ψ̄(x)ΓUP(x,y)ψ(y), whereR = |x−y|
andt = x0 = y0. The Wilson-line operatorUP(x,y) is chosen to connect the pointsx = (t,x) and
y = (t,y) by a straight space-like pathP. An arbitrary Dirac matrix is denoted byΓ, e.g.Γ = γµ in
the vector channel andΓ = iγ5 in the pseudoscalar channel. Let us introduce the forward correlation
function of theQQ̄ pair,

D>(t,R) = 〈MR(t)M†
R(0)〉 (t > 0). (2.1)

In a fully dynamic setting, heavy quarks can propagate in time, hence the relative distance between
Q andQ̄ will change accordingly. On the other hand, if we consider the infinite mass case (mQ →

1This is in contrast to the situation at zero temperature in which a systematic way to derive the potential to be used
in the Schrödinger equation has been formulated in the framework of non-relativistic QCD [5].
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∞), the spatial separationR reduces to an external parameter. The spectral function associated with
Eq.(2.1) reads

ρ(ω ,R) = (1− e−βω)D̃>(ω ,R) =
1
Z ∑

n,n′
|〈n|MR(0)|n′〉|2

(

e−βEn − e−βEn′
)

δ (ω − (En′ −En)),(2.2)

whereβ = 1/T , D̃>(ω ,R) is the Fourier transform ofD>(t,R), andZ is the full partition function
of the system with gluons, light quarks and heavy quarks. Eq.(2.2) is antisymmetric inω due to
the bosonic character of the operatorMR.

We now consider heavy quarks with nearly infinite massmQ → ∞, so that they cannot move
spatially and their relative distanceR stays fixed. The spectral function can thus be decomposed
into the sum of the three contributions,ρ(ω ,R) = ρI(ω ,R)+ ρII (ω ,R)+ ρIII (ω ,R) depending on
the intermediate states given below ("light" implies lightquarks and gluons):

I II III

|n′〉 QQ̄ + light light Q or Q̄ + light
|n〉 light QQ̄ + light Q̄ or Q + light

Since we are interested in the interaction betweenQ andQ̄ with a spatial separationR at the
same point in time, only the contributions I and II are relevant for our purpose. Moreover, I and II
are simply related with each other byρII(ω ,R) = −ρI(−ω ,R), due to the anti-symmetric nature
of the SPF. Without loss of generality, it is therefore sufficient to focus on the contribution I. By
taking into account the fact thatmQ ≫ T , we obtain

ρI(ω̄ ,R) =
1
Z0

∑
n,n′

|〈n|MR(0)|n′〉|2δ (ω̄ − (εn′(R)− εn))e
−βεn , (2.3)

whereZ0 is the partition function without the heavy quarks,|n〉 and |n′〉 belong to the case I in
the above Table. Also, we have defined̄ω ≡ ω − 2mQ, εn′(R) ≡ En′ − 2mQ and εn ≡ En. Note
that εn′(R) is theR-dependent energy of aQQ̄ pair measured from the total rest mass 2mQ, while
εn is R-independent since no heavy quarks are present in the state|n〉. Note that they are both
T -independent by definition.

The spectral structure ofρI(ω̄ ,R) contains all the information of the interaction between the
heavy quarks in the hot medium. To see its connection to the Schrödinger equation for the heavy
quark system, let us start with the following relation obtained from the definitions ofD>

I andρI:

i∂tD
>
I (t,R) = 2mQD>

I (t,R)+ e−i2mQt
∫ ∞

−∞
e−iω̄tω̄ρI(ω̄ ,R)dω̄ . (2.4)

If ρI(ω̄ ,R) has a distinct Breit-Wigner peak at̄ω = ω(R,T ) with a half-widthξ (R,T), Eq.(2.4)
reduces to the Schrödinger equation,

i∂tD
>
I (t,R) =

[

2mQ + ω(R,T)− iξ (R,T)
]

D>
I (t,R)

≡
[

2mQ +ReV (R,T )− iIm V (R,T )
]

D>
I (t,R), (2.5)

with V (R,T ) being the proper heavy-quark potential at finite temperature. On the other hand, if
there are no well-defined peaks inρI(ω̄ ,R), description of theQQ̄ system in terms of the potential
is not justified. Note that the existence of ImV (R,T ) was first pointed out in [9] in which the late
time behavior ofD>(t,R) was calculated in hard thermal loop resummation at highT .
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Figure 1: Wilson lines present in the determination of the imaginary-timeQQ̄ correlatorD(τ,R). The loop,
staple and handles correspond to the case I, II and III definedin Sec.2.2, respectively.

2.2 Thermal Wilson loop and its spectral decomposition

To evaluate the spectral function defined in Eq.(2.3) in non-perturbative lattice QCD simula-

tions, we consider the imaginary-time correlatorD(τ ,R)≡ 〈Tτ MR(τ)M†
R(0)〉

∣

∣

∣

0≤τ<1/T
= 〈MR(τ)M†

R(0)〉.
Since the heavy quarks are assumed not to propagate in the spatial directions, their imaginary time
propagator has the formSE(x− x′,τ − τ ′) = SE(τ − τ ′)δ (x− x′) with SE(τ − τ ′) being written in
terms of temporal Wilson-lines. For the full correlator we obtain

D(τ ,R) = −A+− e−2mQτ Tr[WI(τ ,R)] (loop) (2.6)

+A−+ e−2mQ(β−τ) Tr[WII (τ ,R)] (staple) (2.7)

−A++ e−mQβ Tr[WIII a(τ ,R)+WIII b(τ ,R)] (handles), (2.8)

where the numerical coefficients are defined as e.g.A+− = Tr[ΓΛ(+)Γ̄Λ(−)] with Λ(±) being the
projection operator onto the upper and lower components of the Dirac spinor.WI,II ,III (τ ,R) are the
Wilson-loops at finite temperature with different topological structure (loop, staple and handle) as
shown in Fig.1.

From theirτ-dependence and particle content in the intermediate state, it is easy to see that
loop, staple and handle correspond to the case I, case II and case III respectively. Namely the loop
contributionDI(τ ,R) given in Eq.(2.6) has the spectral decomposition,

DI(τ ,R) = e−2mQτ
∫ ∞

−∞
e−ω̄τ ρI(ω̄ ,R)dω̄ . (2.9)

Thus we arrive at the following formula relating the thermalWilson loop with the spectral function,

Tr[WI(τ ,R)] = − 1
A+−

∫ ∞

−∞
e−ω̄τ ρI(ω̄ ,R)dω̄ . (2.10)

Note that this relation is well-defined in the limitmQ → ∞.
Lattice QCD simulations of the left hand side of Eq.(2.10) for different values ofτ andR allow

a non-perturbative determination of the spectral functionthrough the inverse Laplace transform,
e.g. by using the MEM. The peak position and its width can consequently be translated into the
real and imaginary part of the proper potential.

3. Quenched QCD results at low and high T

To study the feasibility of the method proposed above, we perform quenched lattice QCD sim-
ulations using the plaquette gauge action withβlat = 7.0 on an anisotropicN3

σ ×Nτ = 203× (96−

4
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Figure 2: (Left) The thermal Wilson loopWI(τ,R) as a function ofτ at T = 0.78Tc. The solid lines are the
results of the single exponential fit in the intermediate region of τ. (Right) Proper potential reconstructed
from the single exponential fit of the thermal Wilson loop. The gray line here corresponds to a fit based on
the Cornell-type potentialV (R) = c−α/R + σR with a string tension of

√
σ = 367(5)MeV

32) lattice. The physical lattice spacing and anisotropy are the same with the first reference in
[7], aσ = 4aτ = 0.039fm. We adopt the fixed scale method [11] where one variesNτ to change the
temperature. An advantage of this method is that the latticespacing is the same for all temperatures
so that theQQ̄ potentials for different temperatures can be directly compared without any adjust-
ment. The thermal Wilson loopWI(τ ,R) is calculated as a function ofτ andR. We report here only
the results at the lowest temperature (T = 0.78Tc) and the highest temperature (T = 2.33Tc) using
(125,980) gauge configurations respectively.

Shown in the left panel of Fig.2 is the on-axis thermal Wilsonloop WI as a function ofτ for
different values ofR in the low-temperature confinement phase (T = 0.78Tc). By definition, it is
not symmetric under the reflectionτ ↔ β − τ . In the smallτ region, an effect fromQQ̄ + excited
gluons can be seen, which is similar to the case of the standard hadronic correlation functions. In
the intermediateτ region, we find a single exponential behavior, which suggests the existence of
a distinct peak of vanishing width in the spectral function.The position of the peak is nothing but
the real part of the proper potentialV (R,T ). We make a single exponential fit ofWI for eachR
in the interval (15aτ . τ . 30aτ ). The result is plotted as a function ofR in the right panel of
Fig.2 with filled squares. Error bars estimated by aχ2 fit for several slightly shifted or contracted
fitting regions reflect both the statistical and systematic uncertainties. The data can be fitted well
by a Coulomb + linear form with an effective string tension

√σT=0.78Tc
= 367(5)MeV as indicated

by the gray line. This is smaller than the known value atT = 0,
√σT=0 ≃ 430MeV possibly due

to the thermal fluctuations of the confining string. We emphasize here that (i) the thermal Wilson
loop is directly linked to the Schrödinger equation as we have discussed and (ii) one can obtain not
only the real part but also the imaginary part of the proper potential from the thermal Wilson loop
by using e.g. MEM. Analysis of the present lattice data in thewhole range ofτ by using MEM is
currently under way.

Shown in the left panel of Fig.3 is the thermal Wilson loopWI in the high temperature decon-
finement phase (T = 2.33Tc). In this case, we find three characteristic features: Forτ/aτ ≪ Nτ ,
some evidence for excited states can be seen. Forτ/aτ ∼Nτ/2, there appears an approximate single
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Figure 3: (Left) The thermal Wilson loopWI(τ,R) as a function ofτ at T = 2.33Tc. The solid lines in the
left panel are the results of the triple exponential fit in theintermediate region ofτ. (Right) Proper potential
reconstructed from the triple exponential fit of the thermalWilson loop. Color-singlet potential obtained
from the Polyakov-line correlation in the color-singlet channel is also shown for comparison.

exponential behavior which indicates a well-defined peak inthe spectral function. Forτ/aτ ∼ Nτ ,
the thermal Wilson loop increases asτ increases, which indicates that the spectral functionρI(ω̄ ,R)

has some structure for negativēω although the spectral strength is extremely small. This maybe
interpreted as the effect of thermal gluons with energyεth; they can compensate a deficit of the
external energȳω to match the energy conservation, 2mQ = ω + εth or equivalentlyω̄ = −εth, so
that aQQ̄ can appear in the intermediate state. A triple exponential fit is deployed, designed to give
stable results in the presence of non single-exponential behavior coming from the end regions of
the τ interval. The fit results ofWI for eachR in the interval (10aτ . τ . 20aτ ) leads to the plot
in the right panel of Fig.3. It shows a Coulombic behavior at short distances, while the potential
seems to be Debye screened at long distances. For comparison, we measure the color-singlet free
energy on the same lattice from the Polyakov line correlations in the color-singlet channel under
Coulomb gauge fixing:F(1)(R,T ) = −T ln〈TrΩ(x)Ω†(y)〉. The results are shown by the open
circles. Although ReV (R,T ) andF (1)(R,T ) have no direct theoretical connection, they coincide
within the error margins devoid of any adjustments. An analysis of the present lattice data over the
whole range ofτ by using MEM is currently under way to extract the complete spectral structure of
ρI . This will enable us to extract ImV (R,T ) and also to judge the validity of the potential picture
at highT .

4. Summary and concluding remarks

We proposed a non-perturbative and gauge invariant approach to connect the Schödinger equa-
tion description of a heavyQQ̄ pair in terms of a static potential with the spectral function of the
thermal Wilson loop obtained from Lattice QCD. It was shown that if the spectral structure is
well defined for a set of temperatures(T ) and separation distances(R), the peak position and
width correspond to the real and imaginary part of the properpotentialV (R,T ) respectively. A
first determination of the real part of the proper potential from quenched lattice QCD simulations
(N3

σ ×Nτ = 202 × (96− 32)) was presented for 0.78Tc and 2.33Tc. It showed that although no
apparent connection between the real part of the proper potential and the color-singlet free-energy
potential exist, their values aboveTc coincide within the error bars. We are currently analyzing the
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thermal Wilson loop data for 0.78≤ T/Tc ≤ 2.33, using MEM to determine the full spectral struc-
ture in an attempt to reconstruct not only the real but also the imaginary part, especially above the
phase transition. In the case of infinitely heavy quarks, theonly contribution to such an imaginary
part at highT comes from the scattering of light medium particles, i.e. Landau damping [9, 10].
The non-perturbative determination of ReV (R,T ) and ImV (R,T ) for 1≤ T/Tc ≤ 2 is particularly
important in relation to the fate of charmonium aboveTc.

Two directions for future research are thus in order: (i) we need to include the effects of light
fermions in the medium by utilizing full QCDN f = 2+ 1 configurations, and (ii) the approach
has to be extended to finiteQQ̄ masses. As for (ii), a similar strategy as forT = 0, where the
spatial fluctuations of the heavy quarks are incorporated byappropriate insertion of handles in the
temporal Wilson lines [12] might be a first starting point.

We thank Yuu Maezawa and the members of the WHOT-QCD Collaboration for useful dis-
cussions. This research was supported in part by the Grant-in-Aid of MEXT (Nos. 18540253) and
by Grant-in-Aid for Scientific Research on Innovative Areas(No. 2004: 20105003).
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