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One of the longstanding main objectives of heavy-ion physics is to explore the properties
of Quark Gluon Plasma (QGP), in which the hadronic degrees offreedom are deconfined. The
dissociation of charmonium is proposed to be a signal of the formation of QGP due to the electro-
color screening [1]. Experimentally, both at RHIC and SPS the suppression ofJ/ψ has been
observed [2], however its interpretation is still not quiteunderstood. To fully understand this
phenomenon, a detailed knowledge on the behavior of charmonium states and their dissociation
temperatures is of fundamental importance for present and upcoming heavy ion collisions. From
the theoretical point of view, the mesonic spectral function at finite temperature, which has all the
information of the hadron properties in the thermal medium,e.g. transport properties as well as
dissociation temperatures, is the key quantity to be investigated.

Due to its success at the zero temperature, the potential model is applied to this phenomenon [3],
based either on models or finite temperature lattice QCD results for the heavy quark potential in
a non-relativistic Schrödinger equation. The output dissociation temperature depends strongly on
the potential used. Thus it it is important to have a first-principle calculation of dissociation tem-
perature of charmonium in the hot medium. With the lattice QCD approach, the properties of the
charmonium, which can be directly seen from the spectral function, are contained in the Euclidean
time correlation functions. The extraction of spectral functions from correlators is rather difficult
due to the limited number of points in temporal direction required to perform an analytic contin-
uation from imaginary to real time. The most common used method to obtain spectral function
is the Maximum Entropy Method (MEM) [4]. It is based on the Bayesian algorithm and requires
the prior knowledge of spectral functions as an input. Our first aim is to discuss the algorithm and
emphasize the reasonable prior knowledge to be used. Recently, the zero mode contribution was
argued to be the main contribution to the temperature dependence of the spectral function and one
should get rid of it in MEM analysis on the deformation of the spectral function [5]. We propose
an approach to disentangle this constant zero mode contribution from the others in MEM analysis.
By using very fine isotropic lattice with clover improved Wilson action, we study the temperature
dependence ofJ/ψ and discuss the reliability of the output spectral functionat 1.5Tc.

The Matsubara correlator calculated on lattice is:

GH(τ ,T) = ∑
~x

〈 JH(τ ,~x) J†
H(0,~0) 〉T . (1)

JH is a suitable mesonic operator, here we consider local operator of q̄(τ ,~x)ΓHq(τ ,~x), whereΓH =

1,γµ ,γ5,γ5γµ for scalar, vector, pseudo-scalar and axial vector, respectively. The temperature T is
related to Euclidean temporal extent aNτ by T=1/(aNτ ), where a is the lattice spacing. Through
analytic calculation, the Matsubara correlator can be related to the hadronic spectral function as the
following:

GH(τ ,T) =
∫ ∞

0
dω σH(ω ,T) K(τ ,T,ω), (2)

where the kernel K is given by

K(τ ,T,ω) =
cosh(ω(τ − 1

2T ))

sinh( ω
2T )

. (3)

Inverting Eq. 2 to extract the spectral function at finite temperature lattice QCD is hampered
mainly by two issues: the temporal extent is always restricted by the temperature,aτ ≤ 1/T; the
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spectral functions we want to have should be continuous and have a degree of freedom ofO(1000)
but the correlators are calculated in the discretized time slices with limited numbers, typically
O(10), which makes the inversion ill-posed.

The basic idea of common used MEM algorithm is to get the most probable spectral function in
given data by maximizing the conditional probabilityQ(σ ;α) = exp(αS[σ ]−L[σ ]),whereL[σ ] is
the usual likelihood function and minimized in the standardχ2 fit, and the Shannon-Jaynes entropy
S[σ ] is defined as

S[σ ] =

∫ ∞

0
dω

[

σ(ω)−m(ω)−σ(ω)log

(

σ(ω)

m(ω)

)]

, (4)

wherem(ω) is the default model and it requires the prior information ofspectral functionσ(ω) as
input. α is a real and positive parameter which controls the relativeweight of the entropy S and the
likelihood function L.

There are two important remarks about MEM [6]:

• No matter what default model one is using, the correlators calculated from the spectral func-
tions obtained from MEM analysis always reproduce the lattice correlator data within the
errors,

• The spectral functions obtained from MEM always reproduce the high energy behavior of
the default model.

The first remark mainly concerns the quality of data, which requires huge computing time to get
high statistics and large number of data points; the second remark requires correct high energy
information of the spectral function to be provided in the default model.

As the default model is a very important parameter in MEM analysis, one should put reason-
able information into it. The high energy behavior of the spectral functions, due to asymptotic
freedom, should resemble the free case. Most of the present studies are employing the free contin-
uum spectral as the prior knowledge [7–11], which has the following form [12]:

σH =
Nc

8π2 Θ(ω2−4m2) ω2tanh(
ω
4T

)

√

1−

(

2m
ω

)2

×
[

aH +

(

2m
ω

)2

bH

]

+
Nc

3
T2

2
fH ωδ (ω), (5)

whereNc is number of colors, m is the mass of quark,aH , bH and fH are the specified coefficients
for mesonic channels. On the lattice, the free spectral function is distorted due to the discretization
effects, which mainly show up in the high energy region and has characteristic cusp structures and
automatic smooth cutoff atω/T ≃ log7. Thus it is absolutely necessary for MEM to include free
lattice spectral functions instead of free continuum spectral functions into default model.

The very low energy part of the spectral functions, due to itsrelation with transport properties
of QGP, is of intrinsic interest. According to the Kubo formulae, transport coefficients such as
electrical conductivity are proportional to the slope of the vector spectral function at vanishing
energy. In the free continuum case, as one can see from Eq. 5, there is aωδ (ω) term in specified
channels, which corresponds to a constant contribution to the correlator. In the interacting case, the
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delta function is smeared into a transport peak [13]:ωγ
ω2+γ2 , whereγ is the width of the peak. This

is really another prior knowledge one needs to put into default model in MEM analysis at finite
temperature.

To distinguish the transport contribution from the other parts, instead of doing MEM analysis
on the correlators themselves, we propose to look into the differences of the neighboring correla-
tors,G(τ)−G(τ +1), which gives

G(τ)−G(τ +1) =
∫ ∞

0
dω σ(ω ,T) K̃(τ ,ω), (6)

whereK̃ is given by

K̃(τ ,ω) = 2 sinh
(ω

2

) sinh(ω(Nτ
2 − τ − 1

2))

sinh(ωNτ
2 )

. (7)

Since spectral function isτ independent, the relation of Eq. 6 is exact and without any approxima-
tion. Consequently, the spectral function obtained from the inversion of Eq. 6 should be same as
that in Eq. 2 except the constant contribution is removed. The new kernelK̃ goes smoothly to zero
when energy goes to zero as

lim
ω→0

K̃(ω ,τ) =
Nτ −2τ −1

Nτ
ω + O(ω3). (8)

It avoids the divergence problem of the standard kernel atω = 0 as pointed out by Aarts et al. [14]
and can explore the information of spectral functions in very low energy region.

We now discuss the MEM analysis of correlators mainly in the vector channel. The lattice
correlator data are obtained using non-perturbatively improved clover Wilson fermions on isotropic
quenched configurations. The lattice parameters are shown in Table 1. We have one coarse lattice
(a=0.031fm) and one fine lattice (a=0.015 fm), both of which have temperatures below and above
Tc. The mass of vector meson is tuned to the physicalJ/ψ mass. On the fine latticeamc ≈

0.0987≪ 1 makes discretization effects small. During the MEM analysis, we implicitly look at
the correlators themselves. We use number of points in the investigated energy regionNω = 8000,
remove the first two data points and implement the modified kernel K∗ = tanh(ω/2) ·K to explore
the low energy behavior of spectral function.

Table 1: Lattice parameters

β κ a−1 [GeV] N3
σ ×Nτ T/Tc No. of conf.

6.872 0.13035 6.432 1283×32 0.75 126
1283×16 1.5 198

7.457 0.13179 12.864 1283×64 0.75 179
1283×32 1.5 108

In Fig. 1 we show the default model dependence of vector spectral functions at 0.75Tc on the
fine lattice. We tried default models with free lattice spectral function (DM 1) and free spectral
function plus a resonance peak in the intermediate energy region (DM 2). As one can see, the
outputs of MEM reproduce the high energy behavior of the DMs.Although there are some minor
differences of the second and third peak from different inputs, the ground state peak is always
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Figure 1: Default model dependences of the vector spectral function at 0.75Tc on the fine lattice. The small
plot inside is the behavior for the whole energy region.
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Figure 2: Comparison of vector spectral functions obtained from coarse and fine lattice at 0.75Tc. The
small plot inside is the behavior for the whole energy region.

there and stay clear and robust. The second and third peak in the Fig. 1 could be a mixture of
higher states or MEM artifacts due to the finite lattice spacing and limited number of correlator
points. The comparison of vector spectral functions obtained from coarse and fine lattice at 0.75
Tc in Fig. 2 shows that, when the lattice spacing is reduced, thelow energy part, which is of most
interest, can be well separated from the high energy part, which contains most of the lattice artifacts.
The improvement of output spectral functions can be truly seen with smaller lattice spacing and one
could get a hope to get the higher states with the smaller lattice spacing. No zero mode contribution
was observed at this temperature.

Before we move on to MEM analysis on the temperature aboveTc, which is more compli-
cated due to smaller number of points and smaller physical extent, we investigate the temperature
dependence of the vector channel by looking at the ratio of correlators at 1.5Tc to reconstructed
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Figure 3: G/Grec in the vector channel at 1.5Tc to the reconstructed one from 0.75Tc with β=7.457.
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Figure 4: Default model dependences of vector spectral function at 1.5 Tc on the fine lattice.

correlators,

Grec(τ ,1.5Tc) =

∫ ∞

0
dω K(τ ,1.5Tc,ω) σ(ω ,0.75Tc). (9)

One can see from Fig. 3 the ratio remains unity at small distances, which is mainly contributed
from the high energy part of spectral function, and deviatesfrom unity up to≈12% at the largest
distance, which is dominated by the low energy behavior of the spectral function and indicates the
changes in this region.

For MEM analysis at 1.5Tc, we focus on the fine lattice. In Fig. 4, we tried default models
with spectral function obtained from MEM at 0.75Tc plus transport peak (DM 1) and free lattice
spectral function plus transport peak (DM 2). SPF 1 and 2 are the corresponding outputs from
MEM, respectively. The default model dependence is huge: from SPF 1, we can sayJ/ψ is still
there with negligible modifications; from SPF 2, probably,J/ψ melts at 1.5Tc. Thus, based on the
current data with number points of 32 in the temporal direction, it’s hard to tell whetherJ/ψ is still
there or already dissolved. Furthermore, we calculate the contribution of the transport peak to the
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correlators, once this is removed, the ratio of correlator data to the reconstructed correlator remains
unity within the errors as one can see it from Fig. 3 (similar results were obtained in Ref. [15]
through the ratio of time derivative of correlator to time derivative of Grec), which indicates the
temperature dependence of the correlators could be dominated by the low frequency part of the
spectral functions. Then, by using the spectral function obtained from 0.75Tc as default model, we
looked into the difference of the neighboring correlator (Eq. 6). The output turns out to be exactly
the same as the input spectral function at 0.75Tc, same as SPF 1 in Fig. 4 with very low energy
part suppressed. This accents that the deviation in Fig. 3 could be mainly caused by the zero mode
contribution.

In summary, we remark the main properties of MEM and stress toput reasonable prior knowl-
edge into default model. At 0.75Tc, the ground peak of vector spectral function are stable and
robust. It is possible to resolve the higher states if the lattice spacing is reduced more. At 1.5Tc,
It is still hard to tell the fate ofJ/ψ in the medium withNτ = 32 and the present statistics. The
temperature dependence of spectral function seen from the ratio of correlator data to the recon-
structed correlator can be interpreted to be mainly from thezero mode contribution, which can be
distinguished from the new approach of MEM analysis.
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