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1. Introduction and motivation

Although several unquenched simulations of the QCD equation of stateabgeared in re-
cent years [1], lattice investigations of the thermodynamics of the Yang-MiN) Gector are still
of interest from a fundamental point of view. In particular, the gluoricsgs relevant for the limit
in which the number of colorBl tends to infinity, where analytical simplifications take place [2].
Furthermore, the largl-limit is also a key-ingredient in the AAS/CFT conjecture [3] and in mod-
els of QCD based on gauge-gravity dualities [4]. These motivations led ntzltess a numerical
lattice study of the equilibrium thermodynamics properties at finite temperature (iN)Sgauge
theories [5]; similar works include refs. [6].
In this contribution, we discuss some of the findings of ref. [5], includinggarticular, a com-
parison with the improved holographic QCD (IHQCD) model recently preddsy Kiritsis and
collaborators [7] (see also refs. [8] for related works). The IHQ@adel is an AdS/QCD model
based on a 5D Einstein-dilaton gravity theory with a particélasatzfor the dilaton potential,
which reproduces the leading terms of the(8Y S-function at high energies, and linear confine-
ment with a gapped, discrete glueball spectrum at low energies. TheDH@a&zlel involves two
free parameters, which in refs. [7] were fitted to match the results of prelédtice calculations.
In the context of gauge/gravity dualities, we also discuss the deficit ofrttiepy densitys with
respect to its Stefan-Boltzmann lingg, and a possible comparison with the AdS/CFT prediction
for the largeN limit of the .#" = 4 supersymmetric YM theory [9]:

s 3 45 _3/2
R (3)(2A) %2+ ... (1.1)
in a temperature regime where the Yang-Mills plasma, while still strongly interaetppyoaches
approximate scale invariance.
Next, we investigate whether, in the temperature range studied, the tranelsid the deconfined
SU(N) plasmaA may receive contributions proportional T6 [10]:
A2 A
T4 T2
Finally, we present an extrapolation of our resultsgpfN>T4), A/(N?T#), £ /(N2T#) ands/(N?T?3)
to theN — oo limit.

+B. (1.2)

2. Lattice setup

We ran lattice simulations of SM) gauge theories witN = 3, 4, 5 6 and 8 colors on isotropic
hypercubic lattices of sizeds andNS x N, with Ns = 20 (16) forN = 3 (N > 3) andN, = 5. We
used the standard, unimproved Wilson gauge action, and updated ttgucatidins using heat-bath
for SU(2) subgroups [11] and full-SUN) overrelaxation [12]. For S(B), the physical scale was
set using Sommer’s parametgr[13] while for SUN > 3) it was set by interpolating the string
tension values taken from refs. [14], or (at the larg&smlues only) using the method of ref. [15].
On the lattice, the trace anomaly= € — 3p is proportional to the difference of the expectation
values of the plaquette @t= 0 and at finiteT :
sd p 6 9dB

A=T dT T4 a*dloga

((Uo)o— (Uo)1). (2.1)
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Figure 1: Comparison between the curves obtained using the improvkdjtaphic QCD model (yellow
solid lines) and our lattice results for the trace anomalgsgure, energy density and entropy density eval-
uated in the various SW) gauge groups. All quantities are normalized to their Sté&atizmann (SB)
limits, except forA/T#, which is normalized to the SB limit qf/T*.

The pressure was determined using the “integral method” [16]:

0

T 1 B, dlogZ
p_Twlogg_vlogg_M/ﬁodB

B
o5 = , 98 (U~ WUao), @2)

according to the integration methods discussed in ref. [17]. Eq. (2.2pbeatffected by finite-
volume corrections [18] (especially for very high temperatures [19hmalkvolumes [20]), but at

the temperatures8T; < T < 3.4T. investigated here, these effects are screened [21] and negligible
within the data precision [22]. The energg) (@nd entropy § densities were obtained as:=
A+3p,s=(A+4p)/T.

3. Resaults

Fig. 1 shows that the results for the rescaled trace, pressure, elegjyy and entropy density
are very similar for all groups studied in this wérkhis makes it plausible that the QCD plasma
could be described by models based on the I&tdenit. Fig. 1 also shows the comparison with
the improved holographic QCD model discussed above: the solid lines déeatesults obtained
in ref. [7]; the agreement between our @ results and the IHQCD model is very good.

On the other hand, comparing the @U simulation results with predictions derived from the
A =4 SYM model, is less straightforward: the regime in which the QCD plasma is $grong
coupled is far from conformality—see the left panel of fig. 2. In our siroihes the SUN) plasma
approaches approximate scale invariance only at temperatures appat S8uch temperatures, it
is still far from the Stefan-Boltzmann limit (top right corner of the diagram)j atill strongly
interacting. Interestingly, in that regime the @ and the.#” = 4 SYM entropy densities (both
normalized to their values in the free limit) appear to be close to each other, ifsgrsethe value
of the renormalized 't Hooft coupling in tHdS scheme as th& parameter of the supersymmetric
model (right panel of fig. 2). Incidentally, we note that a comparisanof 4 SYM and full-QCD
lattice results for the drag force also yiellg~ 5.5 [25]. Similar observations can be useful to pin
down appropriate parameters for ADS/CFT models of the sQGP [26].

Another issue we investigated is the possibility that the trace anomaly at temperaise to
Tc may receive contributions proportional ¢ of non-perturbative origin [10]. The simulations

1This feature would be compatible with some quasiparticle model descrigfidhs
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Figure 2: Left panel: the equation of state, displayedpds), reveals the strong deviations of the @U
plasma from the dotted straight line corresponding to conédly invariant models, which is approached
only at temperatures aroundo3 the dashed line is the weak-coupling expansion fof3Uaken from
ref. [24]. Right panel: the entropy density (normalizedtvalue in the free limit) as a function of the
running 't Hooft coupling in theMS scheme; the dashed line is the corresponding prediotiostfongly
coupled4” = 4 SYM [9], identifying theA parameter with the renormalized YM coupling.

seem to confirm that this may be a general feature of all the gauge ggtugied in this work: the
left-hand-side panel of fig. 3 shows that the results¥6F* may be compatible with the behavior
described by eq. (1.2). However, we cannot rule out the possibilitythieatlata may actually be
described by a more complicated functional form (possibly involving logastiof perturbative
origin). Finally, the right-hand-side panel of fig. 3 shows an extrapolatioour results to the
N — oo limit, based on the parametrization for the trace anomaly given in eq. (C1). 28

We plan to extend the present study of (8l thermodynamics to other observables which
could be compared with gauge/gravity predictions [29], and to renormaHagdkov loops. On
the other hand, to understand which non-perturbative features ofXB® sre directly related to
the simplifications occurring in the largédimit and which are not, it would also be interesting to
address similar high-precision thermodynamics studies in models in lower dimsmgibased on
smaller gauge groups, for which powerful numerical algorithms are dé@ilao].
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