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We report on our recent study of equilibrium thermodynamic observables in SU(N) gauge theo-

ries withN = 3, 4, 5, 6 and 8 colors at temperaturesT in the range from 0.8Tc to 3.4Tc (where

Tc denotes the critical deconfinement temperature). The results, which show a very weak depen-

dence on the number of colors, are compared with gauge/gravity models of the QCD plasma,

including the improved holographic QCD model proposed by Kiritsis and collaborators, and with

the supergravity prediction for the entropy density deficit. Furthermore, we investigate the possi-

bility that the trace anomaly may receive contributions proportional toT2 at temperatures close to

Tc. Finally, we present the extrapolated results for the pressure, trace anomaly, energy and entropy

densities in theN → ∞ limit.
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1. Introduction and motivation

Although several unquenched simulations of the QCD equation of state haveappeared in re-
cent years [1], lattice investigations of the thermodynamics of the Yang-Mills (YM) sector are still
of interest from a fundamental point of view. In particular, the gluon sector is relevant for the limit
in which the number of colorsN tends to infinity, where analytical simplifications take place [2].
Furthermore, the large-N limit is also a key-ingredient in the AdS/CFT conjecture [3] and in mod-
els of QCD based on gauge-gravity dualities [4]. These motivations led me to address a numerical
lattice study of the equilibrium thermodynamics properties at finite temperature in SU(N) gauge
theories [5]; similar works include refs. [6].
In this contribution, we discuss some of the findings of ref. [5], including,in particular, a com-
parison with the improved holographic QCD (IHQCD) model recently proposed by Kiritsis and
collaborators [7] (see also refs. [8] for related works). The IHQCDmodel is an AdS/QCD model
based on a 5D Einstein-dilaton gravity theory with a particularAnsatzfor the dilaton potential,
which reproduces the leading terms of the SU(N) β -function at high energies, and linear confine-
ment with a gapped, discrete glueball spectrum at low energies. The IHQCD model involves two
free parameters, which in refs. [7] were fitted to match the results of previous lattice calculations.
In the context of gauge/gravity dualities, we also discuss the deficit of the entropy densitys with
respect to its Stefan-Boltzmann limits0, and a possible comparison with the AdS/CFT prediction
for the large-N limit of the N = 4 supersymmetric YM theory [9]:

s
s0

=
3
4

+
45
32

ζ (3)(2λ )−3/2 + . . . (1.1)

in a temperature regime where the Yang-Mills plasma, while still strongly interacting, approaches
approximate scale invariance.
Next, we investigate whether, in the temperature range studied, the trace anomaly of the deconfined
SU(N) plasma∆ may receive contributions proportional toT2 [10]:

∆
T4

?
=

A
T2 +B. (1.2)

Finally, we present an extrapolation of our results forp/(N2T4), ∆/(N2T4), ε/(N2T4) ands/(N2T3)

to theN → ∞ limit.

2. Lattice setup

We ran lattice simulations of SU(N) gauge theories withN = 3, 4, 5 6 and 8 colors on isotropic
hypercubic lattices of sizesN4

s andN3
s ×Nt , with Ns = 20 (16) forN = 3 (N > 3) andNt = 5. We

used the standard, unimproved Wilson gauge action, and updated the configurations using heat-bath
for SU(2) subgroups [11] and full-SU(N) overrelaxation [12]. For SU(3), the physical scale was
set using Sommer’s parameterr0 [13] while for SU(N > 3) it was set by interpolating the string
tension values taken from refs. [14], or (at the largestβ -values only) using the method of ref. [15].
On the lattice, the trace anomaly∆ = ε −3p is proportional to the difference of the expectation
values of the plaquette atT = 0 and at finiteT:

∆ = T5 ∂
∂T

p
T4 =

6
a4

∂β
∂ loga

(〈U�〉0−〈U�〉T) . (2.1)
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Figure 1: Comparison between the curves obtained using the improved holographic QCD model (yellow
solid lines) and our lattice results for the trace anomaly, pressure, energy density and entropy density eval-
uated in the various SU(N) gauge groups. All quantities are normalized to their Stefan-Boltzmann (SB)
limits, except for∆/T4, which is normalized to the SB limit ofp/T4.

The pressure was determined using the “integral method” [16]:

p = T
∂

∂V
logZ ≃

T
V

logZ =
1

a4N3
s Nτ

∫ β

β0

dβ ′ ∂ logZ

∂β ′
=

6
a4

∫ β

β0

dβ ′ (〈U�〉T −〈U�〉0) , (2.2)

according to the integration methods discussed in ref. [17]. Eq. (2.2) canbe affected by finite-
volume corrections [18] (especially for very high temperatures [19] or small volumes [20]), but at
the temperatures 0.8Tc ≤ T ≤ 3.4Tc investigated here, these effects are screened [21] and negligible
within the data precision [22]. The energy (ε) and entropy (s) densities were obtained as:ε =

∆+3p, s= (∆+4p)/T.

3. Results

Fig. 1 shows that the results for the rescaled trace, pressure, energydensity and entropy density
are very similar for all groups studied in this work1; this makes it plausible that the QCD plasma
could be described by models based on the large-N limit. Fig. 1 also shows the comparison with
the improved holographic QCD model discussed above: the solid lines denotethe results obtained
in ref. [7]; the agreement between our SU(N) results and the IHQCD model is very good.

On the other hand, comparing the SU(N) simulation results with predictions derived from the
N = 4 SYM model, is less straightforward: the regime in which the QCD plasma is strongly
coupled is far from conformality—see the left panel of fig. 2. In our simulations the SU(N) plasma
approaches approximate scale invariance only at temperatures about 3Tc; at such temperatures, it
is still far from the Stefan-Boltzmann limit (top right corner of the diagram), and still strongly
interacting. Interestingly, in that regime the SU(N) and theN = 4 SYM entropy densities (both
normalized to their values in the free limit) appear to be close to each other, if oneuses the value
of the renormalized ’t Hooft coupling in theMS scheme as theλ parameter of the supersymmetric
model (right panel of fig. 2). Incidentally, we note that a comparison ofN = 4 SYM and full-QCD
lattice results for the drag force also yieldsλ ≃ 5.5 [25]. Similar observations can be useful to pin
down appropriate parameters for AdS/CFT models of the sQGP [26].

Another issue we investigated is the possibility that the trace anomaly at temperatures close to
Tc may receive contributions proportional toT2 of non-perturbative origin [10]. The simulations

1This feature would be compatible with some quasiparticle model descriptions[23].
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Figure 2: Left panel: the equation of state, displayed asp(ε), reveals the strong deviations of the SU(N)

plasma from the dotted straight line corresponding to conformally invariant models, which is approached
only at temperatures around 3Tc; the dashed line is the weak-coupling expansion for SU(3) taken from
ref. [24]. Right panel: the entropy density (normalized to its value in the free limit) as a function of the
running ’t Hooft coupling in theMS scheme; the dashed line is the corresponding prediction for strongly
coupledN = 4 SYM [9], identifying theλ parameter with the renormalized YM coupling.

seem to confirm that this may be a general feature of all the gauge groupsstudied in this work: the
left-hand-side panel of fig. 3 shows that the results for∆/T4 may be compatible with the behavior
described by eq. (1.2). However, we cannot rule out the possibility thatthe data may actually be
described by a more complicated functional form (possibly involving logarithms of perturbative
origin). Finally, the right-hand-side panel of fig. 3 shows an extrapolationof our results to the
N → ∞ limit, based on the parametrization for the trace anomaly given in eq. (C1) of ref. [28].

We plan to extend the present study of SU(N) thermodynamics to other observables which
could be compared with gauge/gravity predictions [29], and to renormalizedPolyakov loops. On
the other hand, to understand which non-perturbative features of the sQGP are directly related to
the simplifications occurring in the large-N limit and which are not, it would also be interesting to
address similar high-precision thermodynamics studies in models in lower dimensions or based on
smaller gauge groups, for which powerful numerical algorithms are available [30].
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