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We point out that the third moments of conserved charge®ahen and electric charge numbers,
and energy, as well as their mixed moments, change thes aigrund the QCD phase boundary in
the temperature and baryon chemical potential plane. T¢igae can be measured in relativistic
heavy ion collisions, and will give clear information on thhase structure of QCD and the
state of the system in the early stage of relativistic heamyciollisions. The behaviors of these
moments on the temperature axis and at small quark chenttatfial can be analyzed in lattice

QCD simulations. We emphasize that the third moments obtadm the lattice, together with the

experimental results, will provide a deep understandirguathe QCD phase diagram and the
location of the state created in heavy ion collisions.
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1. Introduction

It is believed that the phase diagram of Quantum chromodigg(@CD) in the temperature
(T) and baryon chemical potentiglig) plane has a critical point where the first order phase tran-
sition at lowT and highpug terminates [1]. It is one of the most challenging subjectdoficm
the existence of the QCD critical poiatperimentally using the relativisitc heavy ion collisions.
A method suggested for this purpose is to exploit fluctuatibservables. The singularity at the
critical point, at which the transition is of second ordemaause enhancements of fluctuations if
fireballs created by heavy ion collisions pass near thecatifioint during the time evolution [2, 3].

If such enhancements are sufficiently large and if the fldizina can survive until the freezeout,

enhancements of fluctuations will be observed by eventveyeanalysis in heavy ion collisions.

Because of finite size effects and critical slowing down, &esv, such singularities are blurred and
its experimental confirmation would be quite difficult [4, 3h fact, so far no clear evidence for

the critical point has been detected [6].

Other proposed way to exploit fluctuation observables tdyapahe phase structure of QCD
are those to use fluctuations of conserved charges [7, 8keSiome fluctuations of conserved
charges behave differently between the hadronic and qglada phases, these fluctuations may
be used as an indicator of the realization of the phase tiamsiApproaches to use higher or-
der moments for this purpose have been also suggestedlyef@rand experimental attempts to
measure those higher order moments were reported, for égaimRef. [10].

2. Third moments of conserved charges

Almost all previous studies focus on thbsolute value, especially the enhancement, of each
observable around the phase boundary. In the present talbrepose to emplogigns of third
moments of conserved charges around the averages, whichlwéc simplicity, the third mo-
ments in the following, to infer the states created by heawydollisions [11]. In particular, we
consider third moments of conserved quantities, the ngtobaand electric charge numbers, and
the energy,

3 3

(O = (B, 2.1
whereN; with ¢ = B, Q represent the net baryon and electric charge numbers ibvalsmeV,
respectivelyE denotes the total energy ¥, dN; = N — (N¢), anddE = E — (E). We also make
use of the mixed moments defined as follows:

((ONc)?3E) (ON(3E)?)
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To understand the behaviors of these moments around the Q&42 poundary, we first notice
that the moments Egs. (2.1) and (2.2) are related to derstf the thermodynamic potential per
unit volume,w, up to third order with respect to the corresponding chehpictentials and'. The
simplest example is(BBB), which is given by

mg(cce) =

mg(ccE) = mg(CEE) = (2.2)

Pw  Ixe

BBB) = -2 % _ 2X8

(2.3)
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where the baryon number susceptibiligg, is defined as

9’0 {((dNs)?)

The baryon number susceptibilipgg diverges at the critical point and has a peak structure aroun
there [2, 12, 13]. Sincey(BBB) is given by theug derivative ofxg as in Eq. (2.3), the existence of
the peak inyg means thatz(BBB) changes its sign there. Although the precise size and sHape o
the critical region are not known, various models prediat the peak structure g well survives
far along the crossover line [12, 1] (See, the left panel gf Eias a demonstration of this feature in
a simple effective model; the details will be explaineddat&his means that the near (hadron) and
far (quark-gluon) sides of the QCD phase boundary can begisshed by the sign afz(BBB)
over a rather wide range around the critical point. As wel s later, all third moments presented
in Egs. (2.1) and (2.2) can be expressed in terms of deragatif corresponding susceptibilities,
which diverge at the QCD critical point and hence change #igns there.

The third moments can be measured in heavy ion collisiondheyevent-by-event analysis
similarly to fluctuations, provided th&; and/orE in a given rapidity rangefy, in fireballs cre-
ated by collisions is determined in each event. The measneoniNg is difficult because of the
difficulty in identifying neutrons. On the other harfdy andE can be measured with the existing
experimental techniques. Four out of the seven third mosriariqgs. (2.1) and (2.2) composed of
No andE thus can be determined experimentally.

All quantities we are considering heidg o andE, are conserved charges and the variation of
their local densities requires diffusion. In Ref. [7], itsvshown that the effect of diffusion is small
enough for the fluctuations of the baryon and electric ctaifythe rapidity range is taken to be
Ay 2 1. In the estimate, the one dimensional Bjorken expansiahstnaight particle trajectories
were assumed. If the contraction of hadron phase due todhseverse expansion and the short
mean free paths are taken into account, the above estimiateevaore relaxed.

Once the negativeness of third moments is established imgreglly, it is direct evidence of
two facts: (1) the existence of a peak structure of corredipgnsusceptibility in the phase diagram
of QCD, and (2) the realization of hot matter beyond the péak, the quark-gluon plasma, in
heavy ion collisions. We emphasize that this statemengusi@signs of third moments does not
depend on any specific models. The experimental measurgrobsigns of moments also have
an advantage compared to their absolute values: it is ysesdiential to normalize experimentally
obtained values by extensive observables, such as thectatajed particle numbéd., in order
to compare the experimental results with theoretical ptexdis [7, 8]. In the measurement of
signs, however, normalization is not necessary. It is #édifre that our proposal is less subject to
experimental and theoretical ambiguities and more rolnast previously proposed ones.

3. Analogy to mountain climbing

The advantage of using signs of third moments, instead cireséments of absolute values,
would be nicely explained in an analogy to mountain climbihgpw, we theoretically expect the
existence of “mountains” of susceptibilities (See, the pefnel of Fig. 1) in the QCD phase dia-
gram. Experimentalists try to confirm the existence of thakpe heavy ion collisions, in other
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words, by directly climbing the mountains. During this edjp®n, in order to confirm the exis-
tence of the peak previous strategy using fluctuation obbérs tried to measure the altitude, i.e.
the value of susceptibility itself. On the other hand, owparsal to use the third moments would
be compared to the measurement of the derivative of traflené has experiences of climbing
mountains, one knows that the measurements of altitudéisudti, but it is quite easy to recognize
whether one is going up or down, namely to recognize jussitireof the derivative of the slope, at
each moment of mountain climbing. In particular, if one heararrived at the edge of the moun-
tains, one knows that it is the most impressive moment dutiegnountain climbing; derivative
of the trail changes positive to negative there, and coralylelifferent scenary suddenly manifests
itself in front of you. Such a moment is so unique that one daarty realize that he/she arrives
at the edge. To confirm the existence of the moutanins, therethe altimeter is not necessary.
Measuring the derivative of trail is a much easy and robust faathis purpose.

In terms of the third moments of conserved chages, expetaheonfirmation of the sign
should be easier than that of the absolute value. Furthernooce the negativeness of third mo-
ments is established experimentally, it is quite stronglevte of the existence of peak structure
of corresponding susceptibility; no model dependencesr ¢his statement. Of course, measuring
the negative third moments in experiments depends on whigtbdireballs can remember the im-
pressive moment until the freezeout, or not. Exploitingi@ments of conserved chages plays a
crucial role for this discussion, as argued above. As therapce of arriving at the edge would be
so impressive, why don’t we anticipate that the we can reneegriie moment even after you come
back home?

4. Other third moments

Let us now consider the behavior of third moments other tigiBBB) around the critical
point. First, the third moment of the net electric changgQQQ) is calculated to be

Pw  10Pw 3 Pw 3 Pw 10w

MQQQ =~ 35 =—22 3523 2~ 25— 53— =33
(QQQ oud  8oud 8ouim 8ousp? 8ay;

(4.1)

where g represents the chemical potential associated Wighi.e. d/dug = (2/3)d/du, —
(1/3)0/0uyg = (8/0us +3/d)/2, and the isospin chemical potential is definequas- (u, —
Ha)/2 with 1, g being the chemical potentials of the up and down quarksestsely. In relativis-
tic heavy ion collisions, the effect of isospin symmetrydkiag is small. Assuming the isospin
symmetry, the second and last terms in EqQ. (4.1) vanish aadbtains

10
mg(QQQ) = 801 (Xs +3X1). (4.2)

with the isospin susceptibility; = —d2w/du?. Under the isospin symmetry; does not diverge
at the critical point because the critical fluctuation doesaouple to the isospin density [3]. The
critical behavior of the term in the parenthesis in Eq. (4n2dhe vicinity of the critical point is
thus solely governed byg. Sincems(QQQ) is a g derivative of this term, a similar behavior as
mg(BBB) is expected.
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Next, it can be shown that mixed moments including a singleskcancisely given by

o 1 o(TXc)
T o7 fl7

mg(ccE) (4.3)
with ¢ = B, Q, wherexq = —9%w/dud = (X + X1)/4 is the electric charge susceptibility. TTe
derivative in Eq. (4.3) is taken along the radial directiooni the origin with fixed = g /T, i.e.
0/0T|y =0/0T |y, + (us/T)0/dus|r. SinceT x. diverges at the critical point, Eqg. (4.3) again
leads to a similar behavior ofiz(ccE) as the above-mentioned moments.

To argue the behaviors of remaining third moments includingor three E’s, it is convenient
to first defineCy = —T(0?w/dT?); = ((SE)?) /VT2. The third moments are then given by

1 9(TCy)

19Cy
Toug '

Mg(BEE) = 2mg(QEE) = (4.4)
SinceCy, is the second derivative ab along a radial direction, it diverges at the critical point
which belongs to the same universality class as that of thésBID model. Thereforenz(EEE),
mg(BEE), andmg(QEE), all change their signs at the critical point.

5. Region with negative third moments and possible lattice analysis

While the above arguments, based on the divergence of selsivéitive ofw, guarantee the
appearance of the region with negative third moments in itiaity of the critical point, they do
not tell us anything about the size of these regions inTthas plane. In fact, all third moments
considered here become positive at sufficiently Higdnd g > 0, where the system approaches a
free quark and gluon system. The regions are thus limitec miokess near the critical point.

The information about the behavior of the third moments atlsps can be extracted from
the numerical results in lattice QCD. For example, with tlayldr expansion method the ther-
modynamic potential is calculated to bhe= —c,(T)u2 — ca(T) g — co(T)u§ — -+, and one can
read off the behavior ais(BBB) at smallug asmg(BBB) = 24{ca(T ) g + 5¢6(T)Us + - --]. Lat-
tice simulations indicate tha(T) is positive definite, whiles(T) becomes negative in the high
temperature phase [15]. From this result one seest@BB) is positive for smallug, while the
negativecs(T ) suggests that the sign ok(BBB) eventually changes at sufficiently largg. Other
moments for smallig can also be evaluated in the Taylor expansion method by dipgo with
respect tal andpg. If the contour lines of vanishing third moments are closeugih to theT -axis,
the lattice simulations may be able to determine these.liBexe the region with a negative third
moment should depend on channels, combined informatiomgos ©f different third moments,
and the comparison of the third moments obtained by expetsnand lattice simulations, will
provide a deep understanding about the state of the systéme arly stage of relativistic heavy
ion collisions and the QCD phase diagram.

6. Analysisin atoy model

The range ofug /T where lattice simulations are successfully applied is, dwax, limited to
small ug /T with the present algorithms. In particular, thermodynaracound the critical point
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Figurel: Left: T andug dependence of the baryon number susceptibyitynultiplied by T in the Nambu-
Jona-Lasinio model. The bold line on the bottom surface shibw first order phase transition line and the
point at the end is the critical poinRight: Regions where third moments take negative values i tpg
plane. The regions are inside the boundaries given by tke.lin

cannot be analyzed with the Taylor expansion method. Inrdodevaluate the qualitative behavior
of the third moments in such a region, one has to resort toteflemodels of QCD. To make such
an estimate, here we employ the two-flavor Nambu-Jona-lcasiodel [16] with the standard
interaction % = G{(PY)? + (PiysTiP)?}, where denotes the quark field. For the isospin
symmetric matter, this model gives a first order phase tiansat large g, as shown on the
bottom surface of the left panel of Fig. 1 by the bold line.

In the left panel of Fig. 1, we also show tAeand g dependence of xg calculated in
the mean-field approximation. One observes phatdiverges at the critical point, and the peak
structure well survives along the crossover line up to higamperatures [12]. The region where
each moment becomes negative inTheig plane is shown in the right panel of Fig. 1. The figure
shows that areas witimz(BBB) < 0 andmg(BBE) < 0 extend to much loweug and much higher
T than the critical point. This suggests that even if the aaltipoint is located at higlug the
negative third moments can be observed by heavy ion callisiperiments. The figure also shows
that the areas have considerable thicknesses along tla dadction. Since the system stays near
the phase transition line considerably long regardlesseobtder of the phase transition, first order
or crossover, once the state on the far side is created,iveedlird moments are very likely to
be formed and observed. The wide regions of negative monaésdsndicate that they are hardly
affected by critical slowing down during the dynamical exan of fireballs.

The right panel of Fig. 1 also shows that areas with negati(&EE), mg(QEE), andmg(BEE)
are much larger than those of the other moments iTthg plane; although not shown in the fig-
ure, these areas extend even toThaxis. The behaviors ofi;(EEE) andmg(CEE) near theT -axis
can be checked directly by the lattice simulations. If thegeof T satisfyingmg(EEE) < O is
sufficiently wide atug = 0, it is possible that the negative third moments are medswen at the
RHIC and LHC energies. Whether the negative moments suprivet in this case depends on
the diffusion time of the energy density, in other words tkatrconductivity. One can thus use the
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signs ofmg(EEE) andmg(cEE) to estimate the diffusion time of the charges and energy.tfine
momentang(QQQ) andmz(QQE), on the other hand, become negative only in a small region nea
the critical point. These behaviors come from the largerdaution of x; in Eq. (4.2).

7. Summary

In this talk, we have pointed out that the third moments ofseoved charges, the net baryon
and electric charge numbers and the energy, change sigms pihéise boundary corresponding to
the existence of the peaks of susceptibilities. If the negahird moments grow at early stage
of the time evolution of fireball created in the collisionsdaihthe diffusion of charges is slow
enough, then the negative third moments will be measuredregrpntally through event-by-event
analyses. Once such signals are measured, they serve esesidence that the peak structure
of corresponding susceptibility exists in the phase diagof QCD, and that the matter on the far
side of the phase transition, i.e. the quark-gluon plasntaciated. The combination of the third
moments of different channels, and their comparison withribmerical results in lattice QCD
will reveal various issues on the phase structure and lisitzes created in heavy ion collisions at
different energies.
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