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1. Introduction

In the past five years a lot of progress has been achieveddnlaahg QCD Equation of State
(for recent reviews see [1, 2, 3]). In the most recent catauia the Equation of State (EoS)has
been evaluated for 2+1 flavor QCD g. in QCD with one strange quark and two liglot ¢) quarks
using various improved staggered fermion actions [4, 5].6Te most extensive calculations of
the EoS have been performed with p4 and asqtad staggereobfiefonmulations on lattices with
temporal extenN; = 4, 6 [5, 6] and 8 [7]. These actions improve both the taste symymodtthe
staggered fermions as well as the quark dispersion rektibhe latter insures that thermodynamic
observables are&’(a?) improved at high temperatures and thus have only a smabftutepen-
dence in this regime. The stout-link action, which has beseduor the calculation of the EoS
on lattices with temporal extet; = 4, 6 [4], only improves the taste symmetry of the staggered
fermions and therefore has the same large discretizatimnseat high temperatures as the standard
staggered fermion formulation. On the other hand the statii@has better taste symmetry which
is important at low temperatures.

While at high temperatures the masses of the relevant degfdeeedom, quarks and gluons,
are small compared to the temperature scale, this is noetfeat low temperatures and in the tran-
sition region. One thus may expect that at these tempestineemodynamic observables are more
sensitive to the quark masses, which control the mass ofghedseudo-scalars and eventually are
responsible for the occurrence of a true phase transitidgharchiral limit. Calculations with p4
and asqtad actions have so-far been performed using ligttkgnassesn{) which are one tenth
of the strange quark mass) and correspond to a lightest pseudo-scalar Goldstone afi&)
and 260 MeV respectively [7]. The calculations with the sink action have been performed at
the physical value of the light quark mass.

The purpose of this work is to investigate the quark massntgrece of the EoS by calculating
it with the p4-action for physical values of the (degenérdight quark masses. The calculational
procedure used in this work closely follows that used in a@vipus calculations at "= 0.1

[6].

2. Calculations of the Equation of State

We have performed calculations with the p4-action for feart values of the gauge coupling
B = 6/g? in the region of the finite temperature crossover. The firéi@gerature calculations
have been performed on 32 8 lattices, while the corresponding zero temperature ¢aticins
have been performed on 8ttices. We used the physical value for the strange quassraad
the ratio of strange to light quark mass was chosen th bems/m = 20. The lattice spacing
was determined by calculating the static potential andaetitig the Sommer scalg from it.
To remove the additive divergent constant in the potentdbwing Ref. [6] we normalized it
to the string potentiaVging(r) = —71/(12r) 4+ or at distancer = 1.5ro. This is needed for the
renormalization of the Polyakov loop as discussed in Réff. 6 Figure 1 the static potential in
units of ro and normalized to the string potential is shown. No diszegiibn errors are visible
in the potential. We extracted pseudo-scalar meson mass&s wall sources in the calculation
of meson propagators. It turned out that thg mass is, with 1 -2 % accuracy, the same as in
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Figure 1: The static potential in units af calculated at different gauge couplings. The dashed lioa/ish
the string potential.

[6]. Thus, a re-adjustment of the line of constant physigalmass corresponding to our new
and smaller light quark masses was not necessary.In fatheipresent calculations we find that
our quark mass values define a line of constant physics diesiraed by the following relations
ro-my=0.3713), ro-mk = 1.158(5), ro- My = 1.578(7) Usingro = 0.469 fm, as determined in
Ref.[10], we gein,; = 154 MeV,mk = 486 MeV and My = 663 MeV. This means that both the
light quark masses and the strange quark mass are very oldseiit physical values. Furthermore,
in the entire parameter range covered by our thermodynaaitiations deviations of the meson
masses from the above values are less than 3%.

The calculation of the EoS starts with the evaluation of taed anomalyij.e. the trace of
the energy-momentum tens@,,(T). Itis related to the temperature derivative of the pressure
through thermodynamic identities,

Ouu(T) _e—3p__d (p) (2.1)

T4 T IRNE

The trace anomaly can be expressed in terms of the expectatioes of quark condensates and
the gluon action density, see e.g. Ref. [7]. The numericallte are shown in Figure 2 and are
compared to the previous calculation at twice larger quaaksm = 0.1m; on N; = 6 lattices [6]
andN; = 8 lattices [7]. The differences betwedh = 6 andN; = 8 calculations are due to cutoff
effects and have been discussed in Ref. [7].As one can seetlfi®figure the main differences to
the N; = 8 results aim = 0.1m arise for temperatures < 200 MeV. These differences can be
understood as resulting from an expected shift of the tt@mstemperature by 5 MeV when the
light quark mass is lowered to approximately its physicdliga At lower temperatures it also is
expected that the trace anomaly increases with decreasary masses as hadrons become lighter
when the quark mass is decreased. While a tendency for sucler@ase may be indicated by the
data at the lowest two temperatures reached in our calonlatiis effect is certainly not significant
within the current statistical accuracy.

1A physical value for thejssmass can be obtained from the relatiop, = 4 /2m§ —mé = 686 MeV.
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Figure 2: The trace anomalge — 3p),/T# calculated for the physical quark mass and compared witvi-pre
ous calculations at larger light quark masegs= 0.1m (left) and the pressure as well as the energy density
(right). We compare the trace anomaly with as well as withHiRG model, which includes all the reso-
nances up to B3GeV. The horizontal band shows the expected uncertairttyeirenergy density due to the
choice of the lower integration limit

At temperatures below the transition temperature it is etqubthat thermodynamic quantities
are well described by a hadron resonance gas (HRG) modehctnthe freeze-out of hadrons in
heavy ion experiments takes place in the transition regmhtie observed particle abundances are
well described by the HRG model [12, 13]. Therefore in Fig2iree also show the prediction of the
HRG model, which includes all the known resonances up to #EsMox = 2.5 GeV. The lattice
data fore — 3p are below the HRG prediction although the deviations froarétsmaller compared
to the results obtained at, = 0.1ms. We mention again the present statistical accuracy and the
possibility of discretization effects in the hadron spewir In particular, due to taste breaking of
staggered fermions pseudo-scalar mesons are not degeatfiaite lattice spacing, therefore their
contribution to thermodynamic quantities maybe supprksse

From the trace anomaly the pressure and thus other thermaodgrguantities can be calcu-
lated by performing the integration over the temperature

p(T) p(To) [T 1
= 4T’ 25 OyulT") 2.2)

HereTg is an arbitrary temperature value that is usually chosendndw temperature regime where
the pressure and other thermodynamical quantities areresggx exponentially by Boltzmann
factors associated with the lightest hadronic states,the.pions. Energy and entropy ¢T =
(p+¢)) densities are then obtained by combining resultgfti* and(e —3p) /T4. The numerical
results for the pressure and energy density are shown irRFighe uncertainties from the choice of
the lower integration limit are shown as a horizontal banthafigure. The estimated uncertainties
are about 8% in the energy density at the highest temperafure~ 260MeV, and about 13% for
the pressure.

3. Deconfinement and chiral aspects of the QCD transition

In the previous section we have seen that the energy dermityssa rapid rise in the tem-
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perature interval = (170— 200)MeV. This is usually interpreted to be due to deconfinemeet, i
liberation of many new degrees of freedom. For sufficiendlsgé quark mass this transition is
known to be a first order transition (see e.g. Ref. [16]). ka limit of infinitely large quark mass
the order parameter for the deconfinement phase transgtitwe iPolyakov loop. After renormaliza-
tion it can be related to the free energy of a static quarkqurirk pair.(T) at infinite separation
[17, 18] L;en(T) = exp(—Fw(T)/(2T)) A rapid change in this quantity is indicative for deconfine-
ment also in the presence of light quarks. In the opposité lifnzero quark mass one expects
a chiral transition and the corresponding order paramsténé chiral condensate. For a genuine
phase transition, i.e. in the chiral limit the chiral condate vanishes at the critical temperature
T.. However, we expect that even for the crossover at finitelqoerss the light quark condensate
rapidly drops in the transition region, indicating an apgimoate restoration of the chiral symmetry.
At non-vanishing quark mass the chiral condensate needsvadahd multiplicative renormaliza-
tion. Therefore, following Ref. [6, 7] we introduce the salled subtracted chiral condensate

<4_’w>l7r - %(ll_ltms,r
(GW)o— m(Py)so’

Here the subscriptsands refer to light and strange chiral condensates, while theaitt 0 and

T to the case of zero and finite temperature respectively. r&ctitin of the strange quark conden-
sate multiplied by the ratio of the light to strange quark snemmoves the quadratic divergence
proportional to the quark mass.

In Figure 3 we show the renormalized Polyakov loop and théraated chiral condensafe ¢
and compare with previous calculations performed at liglgrly masses equal to one tenth of the
strange quark mass [7]. The renormalized Polyakov loos riseghe temperature intervdl =
(170—200) MeV where we also see the rapid increase of the energy deAditiie same time the
subtracted chiral condensate rapidly drops in the tramsitegion, indicating that the approximate
restoration of the chiral symmetry happens in the same teatyre interval as deconfinement.
Compared to the calculation performed at light quark massgml to one tenth of the strange
guark mass we see a shift of the transition region by roughiie¥. We note that such a shift arises
differently in different observables. In the case of thetgdied chiral condensate, for instance, a
major ingredient to the ’shift’ is the fact, that at fixed teengture the condensate in the transition
region is strongly quark mass dependent and drops propattto /m /ms [19].

The fluctuation of strangeness is also indicative of decenfent. It can be defined as the
second derivative of the free energy density with respettiestrange quark chemical potential

AI,s(T) = (3-1)

1 92InZ(T,us)
X =gz o 52

At low temperatures strangeness is carried by massive hadmod therefore strangeness fluctua-
tions are suppressed. At high temperatures strangeneasrisdcby quarks and the effect of the
strange quark mass is small. Therefore strangeness fliiaare not suppressed at high tem-
peratures. As discussed in Ref. [7] strangeness fluctisabehave like the energy density in the
transition region, i.e. they rapidly rise in a narrow tengiare interval. In Fig. 4 we show the
strangeness fluctuations calculatedrat= 0.05m and compare them with previous calculations
performed atm = 0.1mg [7]. In the bottom figure we also show the strangeness fluciudbr
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Figure 3: The renormalized Polyakov loop (left) and the subtractéchtbondensate (right) as function of
the temperature calculatedrat = 0.05ms and at 01ms.
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Figure 4. Strangeness fluctuations as function of the temperatucelled¢d atm = 0.05ms and at 01m,
In the right plot the numerical data fon = 0.1mgs have been shifted by 5 MeV.

m = 0.1ms with a 5 MeV shift of the temperature scale. As one can seesttifs accounts for
most of the quark mass dependence of the strangeness flootuafhis is consistent with the

conclusion obtained from the quark mass dependence of thtbenodynamic observables.

4. Conclusion

We have calculated the E0S, renormalized Polyakov looptractied chiral condensate and
strangeness fluctuations in (2+1)-flavor QCD in the crossoegion from low to high tempera-
tures using the improved p4 staggered fermion formulatiofattices with temporal extemN; = 8
at physical values of the light and strange quark masses.owelfthat thermodynamic quantities
below the deconfinement transition are larger compareddagtlvious calculations performed at
twice larger quark mass but fall below the resonance gas hnesiglt. The differences in the ther-
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modynamic quantities calculatedrat = 0.05m; andm; = 0.1mg can be well understood in terms
of the shift of the transition temperatures towards smattdues when the quark mass is decreased.
This conclusion is also supported by the calculation of revadized Polyakov loop, subtracted
chiral condensate and strangeness fluctuations. No adaittmhancement of the pressure and the
energy density is seen at low temperatures. This and thatiavifrom the resonance gas model
may be a cutoff effect due to taste violations. However doettatistical accuracy and calculations
at smaller lattice spacing are needed to quantify this eissefThe transition region in our calcula-
tions corresponds to larger temperatures compared totreakmlations with stout action [20, 21].

It remains to be seen whether the taste symmetry violatidnishnare larger for the p4 action are
responsible for this discrepancy. At temperatures abo¥eM8V no quark mass dependence is
seen in the equation of state.
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