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1. Introduction

In the past five years a lot of progress has been achieved in calculating QCD Equation of State
(for recent reviews see [1, 2, 3]). In the most recent calculations the Equation of State (EoS)has
been evaluated for 2+1 flavor QCD,i. e. in QCD with one strange quark and two light (u,d) quarks
using various improved staggered fermion actions [4, 5, 6, 7]. The most extensive calculations of
the EoS have been performed with p4 and asqtad staggered fermion formulations on lattices with
temporal extentNτ = 4, 6 [5, 6] and 8 [7]. These actions improve both the taste symmetry of the
staggered fermions as well as the quark dispersion relations. The latter insures that thermodynamic
observables areO(a2) improved at high temperatures and thus have only a small cut-off depen-
dence in this regime. The stout-link action, which has been used for the calculation of the EoS
on lattices with temporal extentNτ = 4, 6 [4], only improves the taste symmetry of the staggered
fermions and therefore has the same large discretization errors at high temperatures as the standard
staggered fermion formulation. On the other hand the stout action has better taste symmetry which
is important at low temperatures.

While at high temperatures the masses of the relevant degrees of freedom, quarks and gluons,
are small compared to the temperature scale, this is not the case at low temperatures and in the tran-
sition region. One thus may expect that at these temperatures thermodynamic observables are more
sensitive to the quark masses, which control the mass of the light pseudo-scalars and eventually are
responsible for the occurrence of a true phase transition inthe chiral limit. Calculations with p4
and asqtad actions have so-far been performed using light quark masses (ml) which are one tenth
of the strange quark mass (ms) and correspond to a lightest pseudo-scalar Goldstone massof 220
and 260 MeV respectively [7]. The calculations with the stout-link action have been performed at
the physical value of the light quark mass.

The purpose of this work is to investigate the quark mass dependence of the EoS by calculating
it with the p4-action for physical values of the (degenerate) light quark masses. The calculational
procedure used in this work closely follows that used in our previous calculations at ˆml = 0.1m̂s

[6].

2. Calculations of the Equation of State

We have performed calculations with the p4-action for fourteen values of the gauge coupling
β = 6/g2 in the region of the finite temperature crossover. The finite temperature calculations
have been performed on 323 × 8 lattices, while the corresponding zero temperature calculations
have been performed on 324 lattices. We used the physical value for the strange quark mass and
the ratio of strange to light quark mass was chosen to beh = ms/ml = 20. The lattice spacing
was determined by calculating the static potential and extracting the Sommer scaler0 from it.
To remove the additive divergent constant in the potential following Ref. [6] we normalized it
to the string potentialVstring(r) = −π/(12r) + σr at distancer = 1.5r0. This is needed for the
renormalization of the Polyakov loop as discussed in Ref. [6]. In Figure 1 the static potential in
units of r0 and normalized to the string potential is shown. No discretization errors are visible
in the potential. We extracted pseudo-scalar meson masses using wall sources in the calculation
of meson propagators. It turned out that theηss̄ mass is, with 1 -2 % accuracy, the same as in
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Figure 1: The static potential in units ofr0 calculated at different gauge couplings. The dashed line shows
the string potential.

[6]. Thus, a re-adjustment of the line of constant physicalηss̄ mass corresponding to our new
and smaller light quark masses was not necessary.In fact, inthe present calculations we find that
our quark mass values define a line of constant physics characterized by the following relations
r0 ·mπ = 0.371(3), r0 ·mK = 1.158(5), r0 ·mηss̄ = 1.578(7) Usingr0 = 0.469 fm, as determined in
Ref.[10], we getmπ = 154 MeV,mK = 486 MeV and1 mηss̄ = 663 MeV. This means that both the
light quark masses and the strange quark mass are very close to their physical values. Furthermore,
in the entire parameter range covered by our thermodynamic calculations deviations of the meson
masses from the above values are less than 3%.

The calculation of the EoS starts with the evaluation of the trace anomaly,i.e. the trace of
the energy-momentum tensorΘµµ(T ). It is related to the temperature derivative of the pressure
through thermodynamic identities,

Θµµ(T )

T 4 =
ε −3p

T 4 = T
d

dT

( p
T 4

)

. (2.1)

The trace anomaly can be expressed in terms of the expectation values of quark condensates and
the gluon action density, see e.g. Ref. [7]. The numerical results are shown in Figure 2 and are
compared to the previous calculation at twice larger quark massml = 0.1ms on Nτ = 6 lattices [6]
andNτ = 8 lattices [7]. The differences betweenNτ = 6 andNτ = 8 calculations are due to cutoff
effects and have been discussed in Ref. [7].As one can see from the figure the main differences to
the Nτ = 8 results atml = 0.1ms arise for temperaturesT < 200 MeV. These differences can be
understood as resulting from an expected shift of the transition temperature by 5 MeV when the
light quark mass is lowered to approximately its physical value. At lower temperatures it also is
expected that the trace anomaly increases with decreasing quark masses as hadrons become lighter
when the quark mass is decreased. While a tendency for such anincrease may be indicated by the
data at the lowest two temperatures reached in our calculation, this effect is certainly not significant
within the current statistical accuracy.

1A physical value for theηss̄ mass can be obtained from the relationmηss̄ =
√

2m2
K −m2

π = 686 MeV.
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Figure 2: The trace anomaly(ε −3p)/T4 calculated for the physical quark mass and compared with previ-
ous calculations at larger light quark massesml = 0.1ms (left) and the pressure as well as the energy density
(right). We compare the trace anomaly with as well as with theHRG model, which includes all the reso-
nances up to 2.5GeV. The horizontal band shows the expected uncertainty inthe energy density due to the
choice of the lower integration limit

At temperatures below the transition temperature it is expected that thermodynamic quantities
are well described by a hadron resonance gas (HRG) model. In fact, the freeze-out of hadrons in
heavy ion experiments takes place in the transition region and the observed particle abundances are
well described by the HRG model [12, 13]. Therefore in Figure2 we also show the prediction of the
HRG model, which includes all the known resonances up to the massMmax = 2.5 GeV. The lattice
data forε −3p are below the HRG prediction although the deviations from itare smaller compared
to the results obtained atml = 0.1ms. We mention again the present statistical accuracy and the
possibility of discretization effects in the hadron spectrum. In particular, due to taste breaking of
staggered fermions pseudo-scalar mesons are not degenerate at finite lattice spacing, therefore their
contribution to thermodynamic quantities maybe suppressed.

From the trace anomaly the pressure and thus other thermodynamic quantities can be calcu-
lated by performing the integration over the temperature

p(T )

T 4 −
p(T0)

T 4
0

=
∫ T

T0

dT ′ 1

T ′5
Θµµ(T ′). (2.2)

HereT0 is an arbitrary temperature value that is usually chosen in the low temperature regime where
the pressure and other thermodynamical quantities are suppressed exponentially by Boltzmann
factors associated with the lightest hadronic states, i.e.the pions. Energyε and entropy (sT =

(p+ε)) densities are then obtained by combining results forp/T 4 and(ε −3p)/T 4. The numerical
results for the pressure and energy density are shown in Fig.2. The uncertainties from the choice of
the lower integration limit are shown as a horizontal band inthe figure. The estimated uncertainties
are about 8% in the energy density at the highest temperatureof T ≃ 260MeV, and about 13% for
the pressure.

3. Deconfinement and chiral aspects of the QCD transition

In the previous section we have seen that the energy density shows a rapid rise in the tem-
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perature intervalT = (170−200)MeV. This is usually interpreted to be due to deconfinement, i.e.
liberation of many new degrees of freedom. For sufficiently large quark mass this transition is
known to be a first order transition (see e.g. Ref. [16]). In the limit of infinitely large quark mass
the order parameter for the deconfinement phase transition is the Polyakov loop. After renormaliza-
tion it can be related to the free energy of a static quark anti-quark pairF∞(T ) at infinite separation
[17, 18]Lren(T ) = exp(−F∞(T )/(2T )) A rapid change in this quantity is indicative for deconfine-
ment also in the presence of light quarks. In the opposite limit of zero quark mass one expects
a chiral transition and the corresponding order parameter is the chiral condensate. For a genuine
phase transition, i.e. in the chiral limit the chiral condensate vanishes at the critical temperature
Tc. However, we expect that even for the crossover at finite quark mass the light quark condensate
rapidly drops in the transition region, indicating an approximate restoration of the chiral symmetry.
At non-vanishing quark mass the chiral condensate needs additive and multiplicative renormaliza-
tion. Therefore, following Ref. [6, 7] we introduce the so-called subtracted chiral condensate

∆l,s(T ) =
〈ψ̄ψ〉l,τ −

ml
ms
〈ψ̄ψ〉s,τ

〈ψ̄ψ〉l,0−
ml
ms
〈ψ̄ψ〉s,0

. (3.1)

Here the subscriptsl ands refer to light and strange chiral condensates, while the subscript 0 and
τ to the case of zero and finite temperature respectively. Subtraction of the strange quark conden-
sate multiplied by the ratio of the light to strange quark mass removes the quadratic divergence
proportional to the quark mass.

In Figure 3 we show the renormalized Polyakov loop and the subtracted chiral condensate∆l,s

and compare with previous calculations performed at light quark masses equal to one tenth of the
strange quark mass [7]. The renormalized Polyakov loop rises in the temperature intervalT =

(170−200) MeV where we also see the rapid increase of the energy density. At the same time the
subtracted chiral condensate rapidly drops in the transition region, indicating that the approximate
restoration of the chiral symmetry happens in the same temperature interval as deconfinement.
Compared to the calculation performed at light quark massesequal to one tenth of the strange
quark mass we see a shift of the transition region by roughly 5MeV. We note that such a shift arises
differently in different observables. In the case of the subtracted chiral condensate, for instance, a
major ingredient to the ’shift’ is the fact, that at fixed temperature the condensate in the transition
region is strongly quark mass dependent and drops proportional to

√

ml/ms [19].
The fluctuation of strangeness is also indicative of deconfinement. It can be defined as the

second derivative of the free energy density with respect tothe strange quark chemical potential

χs(T ) =
1

T 3V
∂ 2 lnZ(T,µs)

∂ µ2
s

|µs=0. (3.2)

At low temperatures strangeness is carried by massive hadrons and therefore strangeness fluctua-
tions are suppressed. At high temperatures strangeness is carried by quarks and the effect of the
strange quark mass is small. Therefore strangeness fluctuations are not suppressed at high tem-
peratures. As discussed in Ref. [7] strangeness fluctuations behave like the energy density in the
transition region, i.e. they rapidly rise in a narrow temperature interval. In Fig. 4 we show the
strangeness fluctuations calculated atml = 0.05ms and compare them with previous calculations
performed atml = 0.1ms [7]. In the bottom figure we also show the strangeness fluctuation for
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Figure 3: The renormalized Polyakov loop (left) and the subtracted chiral condensate (right) as function of
the temperature calculated atml = 0.05ms and at 0.1ms.
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Figure 4: Strangeness fluctuations as function of the temperature calculated atml = 0.05ms and at 0.1ms.
In the right plot the numerical data forml = 0.1ms have been shifted by 5 MeV.

ml = 0.1ms with a 5 MeV shift of the temperature scale. As one can see thisshift accounts for
most of the quark mass dependence of the strangeness fluctuations. This is consistent with the
conclusion obtained from the quark mass dependence of otherthermodynamic observables.

4. Conclusion

We have calculated the EoS, renormalized Polyakov loop, subtracted chiral condensate and
strangeness fluctuations in (2+1)-flavor QCD in the crossover region from low to high tempera-
tures using the improved p4 staggered fermion formulation on lattices with temporal extentNτ = 8
at physical values of the light and strange quark masses. We found that thermodynamic quantities
below the deconfinement transition are larger compared to the previous calculations performed at
twice larger quark mass but fall below the resonance gas model result. The differences in the ther-
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modynamic quantities calculated atml = 0.05ms andml = 0.1ms can be well understood in terms
of the shift of the transition temperatures towards smallervalues when the quark mass is decreased.
This conclusion is also supported by the calculation of renormalized Polyakov loop, subtracted
chiral condensate and strangeness fluctuations. No additional enhancement of the pressure and the
energy density is seen at low temperatures. This and the deviation from the resonance gas model
may be a cutoff effect due to taste violations. However, better statistical accuracy and calculations
at smaller lattice spacing are needed to quantify this assertion. The transition region in our calcula-
tions corresponds to larger temperatures compared to recent calculations with stout action [20, 21].
It remains to be seen whether the taste symmetry violations which are larger for the p4 action are
responsible for this discrepancy. At temperatures above 200 MeV no quark mass dependence is
seen in the equation of state.
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