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1. Introduction

Since there are an equal number ofleft-handed andright-handed particles in the lattice fermion
propagator for each set of quantum numbers, there is no chiral anomalyon the lattice for the
naıve fermions. Canonical local formulations, such as the Wilson fermions,the Kogut-Susskind
fermions, the twisted mass fermions or the Creutz-Boriçi fermions break the flavour singlet axial
U(1) and some or all of the flavour non-singlet axial symmetries. The overlap fermions, on the
other hand, preserve all chiral symmetries and have an index theorem aswell.

Interestingly, chiral anomaly plays a crucial role in deciding the structure of the QCD phase
diagram for our world with two light quarks and one moderately heavy quark. A fundamental
aspect of the QCD phase diagram may be the existence of a critical point in theT-µB plane, where
µB denotes the baryonic chemical potential. The critical point is expected on thebasis of chiral
symmetries and model considerations. Since we employ lattice techniques to investigate the phase
diagram, the presence on those chiral symmetries on the lattice is desired, if not required, in the
entireT-µB plane. The popular staggered fermions have a remnant chiral symmetry onthe lattice
but a not so well-defined flavour number; two flavours are simulated usinga square root of the
fermion determinant for them. Clearly, use of overlap fermions with exact chiral symmetry on
lattice is desirable.

Introduction of chemical potential for the overlap fermions turns out to be nontrivial. Ideally,
one should construct the conserved charge,N, as a first step and then simply addµN to the action.
For the local fermions, this leads toa−2 divergences in the continuum limit in thermodynamic
quantities such as the energy density or the number density. One uses the freedom of adding
irrelevant terms to cure them by multiplying gauge links in positive/negative time direction by
exp(aµ) and exp(−aµ) respectively or more general functions which satisfy certain conditions
[1]. Note that this modification, indeed even the simple addition ofµN does not change the chiral
invariance of the lattice action in anyway. The non-local nature of the overlap fermions makes this
construction difficult, possibly even non-unique [2]. It was proposedby Bloch and Wettig [3] that
the same prescription of multiplying the gauge links, as above, may be used. This required them to
extend the definition of the sign function employed in the overlap operator since the argument of
the sign function, namely the Wilson-Dirac matrix, was no moreγ5-hermitian.

Banerjee, Gavai and Sharma [4] showed analytically that this prescription does not have any
a−2 divergences in the continuum limit but unfortunately the resultant overlap fermion action has
no chiral invariance on the lattice for nonzeroµ. Of course, it is restored in the continuum limit
but so it is for the simpler local Wilson fermions: in both cases the bare parameters of the action
such as the quark mass or the chemical potential will get renormalized and depend on the coupling
g. Alternatively, one can modify the chiral transformation, again by terms which vanish in the
continuum limit, to restore the chiral invariance. This explains the results obtained by Bloch and
Wettig that one even has an index theorem for theµ-dependent overlap Dirac operator: the anomaly
equation itself isµ-dependent [3]. Our work presented in this talk was sparked by the curiosity
about the fate of the anomaly relation in the continuum on the introduction of nonzero chemical
potential.

Before presenting our work let us remark, however, that the change inthe chiral transformation
on the lattice implied by the Bloch-Wettig proposal is undesirable since it makes thegenerators of
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the transformation to be non-hermitian. Worse still, the symmetry group itself changes for each and
every change ofµ, making this avenue not very useful for the original problem of investigation of
the QCD phase diagram in theT-µB plane. In order to appreciate the loss, recall that the symmetry
group remains thesameat eachT for µ = 0. Therefore, a study of the temperature dependence of
the order parameter〈ψ̄ψ〉, and any abrupt change in it at the transition temperature, can reveal the
chiral symmetry restoring transition, if any, and thereby the change in the nature of the vacuum.
Were the symmetry group to change as a function ofT, it would be impossible to attribute a vanish-
ing chiral condensate uniquely as a change in the vacuum or a phase change, thereby eliminating
the role of the chiral condensate as the order parameter. Thus one can indeed use the freedom of
adding terms irrelevant in the continuum limit to modify the chiral transformation onthe lattice but
such a change should not rob one off the usual order parameter for studying the chiral transition.

2. Anomaly at T = 0 and µ 6= 0 in continuum

Classicallyψ ′ = exp(iαγ5) ψ andψ̄ ′ = ψ̄ exp(iαγ5) is a symmetry for the QCD action for
massless quarks , leading to the current conservation equation∂µJµ

5 = 0. At finite temperature
and/or density, this classical symmetry remains intact. Quantum loop effects can, and do, cause
corrections already atT = µ = 0, leading to the anomaly equation. One needs to compute〈∂µJµ

5 〉

to check this. The famous calculation of the Adler-Bell-Jackiw(ABJ) trianglediagram for the
U(1) case [5] demonstrated perturbatively that the axialU(1) is broken by quantum effects while
Fujikawa [6] provided a new insight by showing that the anomaly arises dueto the change of the
fermion measure under the corresponding transformation of the fermion fields in the path integral
method. We have used both the methods to check the fate of the anomaly equationat finite density,
i.e, on introduction of a nonzero chemical potentialµ at zero temperature.

2.1 Perturbative calculation

The lowest order diagram is the canonincal ABJ axial vector-vector-vector(AVV) triangle di-
agram. It is well-known that the higher order diagrams do not contribute to the anomaly equation
at zero density, neither do other diagrams like the square and pentagon diagrams. We too therefore
compute only AVV triangle diagram at finite density. Our notation for the QCD Lagrangian in the
Euclidean space with the finite number density term is the same as in [7]. In order to maintain
consistency with the lattice literature, we have, however, chosen the Dirac gamma matrices to be
Hermitian, leading to the action,

L = −ψ̄(6D+m)ψ −
1
2

Tr Fαβ Fαβ + µψ̄γ4ψ , (2.1)

where 6D = γν(∂ν − igAa
νTa) with Ta being the generators of the SU(3) gauge group. Theγ5 =

γ1γ2γ3γ4 is also hermitian in our case. Using the canonical Euclidean space Feynman rules, the
amplitude of these AVV triangle diagrams can be computed. Denoting by∆λρσ (k1,k2) the total
amplitude and contracting it withqλ , the 〈∂µ j5µ〉 for µ 6= 0 can be obtained from the triangle
diagrams forµ 6= 0:

qλ ∆λρσ = −i g2tr[TaTb]
∫

d4p
(2π)4Tr

[

γ5 1
6p− 6q− iµγ4γσ 1

6p− 6k1− iµγ4 γρ
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− γ5 1
6p− iµγ4 γσ 1

6p− 6k1− iµγ4 γρ + γ5 1
6p− 6q− iµγ4 γρ 1

6p− 6k2− iµγ4 γσ

− γ5 1
6p− iµγ4 γρ 1

6p− 6k2− iµγ4 γσ
]

. (2.2)

An inspection of the eq.(2.2) reveals quadratically divergent integrals which differ from the
usual case by merely havingµ 6= 0. The computation therefore can be done the same way by
writing [8] qλ ∆λρσ = (−i) tr [TaTb]g2∫ d4p

(2π)4 [ f (p−k1,k2)− f (p,k2)+ f (p−k2,k1)− f (p,k1)]

for a suitably chosen functionf and introducing a gauge-invariant cut-off. The nonzeroµ appears
in f in the denominator as[(p4 − iµ)2 +~p2] with linear in µ and aµ-independent term in the
numerator; theµ2 term vanishes being proportional to Tr[γ5γ4γσ γ4γρ ] ∼ ε4σ4ρ . The final result
turns [8] out to be the same anomaly relation as forµ = 0, since theµ-dependent terms appear with
Λ−1, and vanish as the cut-offΛ → ∞. The same computation is easily generalized [8] to nonzero
temperatures.

2.2 Non-perturbative calculation

Fujikawa [6] taught us how to compute the chiral anomaly non-perturbatively using the path
integral formalism. Under the chiral transformation of the fermion fields, the measure changes as

Dψ̄
′
Dψ

′
= Dψ̄ Dψ Det|

∂ (ψ̄ ′
,ψ ′

)

∂ (ψ̄,ψ)
| = Dψ̄ Dψ exp(−2iα

∫

d4x Trγ5) . (2.3)

The trace can be computed using the the eigenvectors of the operator6D. It is an anti-Hermitian
operator forµ = 0 with purely imaginary eigenvalues and the corresponding eigenvectors form a
complete orthonormal basis. Using the fact{γ5, 6D} = 0, it is easy to show[8] that Trγ5 = 0 for the
space of eigenvectors with nonzero eigenvalues, leading to the usual Trγ5 = n+−n− relation.

6D(µ) still anti-commutes withγ5 but has both an anti-Hermitian and a Hermitian term. Re-
markably, it turns out [8] still to be diagonalizable with right and left eigenvectors which to-
gether form a complete set using which essentially the same argument as above leads to the same
Tr γ5 = n+ − n− for µ 6= 0 as well. Note that the zero modes are still defined with respect to
6D(µ = 0). This should be contrasted with the index theorem for the overlap operatorproposed
by Bloch-Wettig where the zero modes areµ-dependent[3]. This is perhaps natural since the
corresponding chiral transformation isµ-dependent, as discussed above.

Curiously, a “gauge-like” symmetry, defined by anon-unitarytransformation of the fermion
fields, given byψ ′

(x,τ) = exp(µτ) ψ(x,τ), ψ̄ ′
(x,τ) = ψ̄(x,τ) exp(−µτ) , eliminates all theµ-

dependent terms of the QCD action. This transformation commutes with the chiraltransformations,
explaining thus the preservation of the same anomaly relation forµ 6= 0. If one were to insist on
this symmetry on the lattice, then addition of a simpleµN is easily seen to be forbidden for any
local fermion action. Moreover, it can be easily implemented for any such local action, and leads
naturally to all the known proposals [1] of introduction of the chemical potential on thelattice so
far.

While the symmetry clearly arises in the continuum due to the local nature of the fermion
action, one may choose to demand it for even non-local lattice actions. A natural proposal then
for the overlap operator for nonzeroµ is Dov(µ) = exp(−µτ) Dov(µ = 0)exp(µτ). While this
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can be shown to i) satisfy the Ginsparg-Wilson relation [9] and ii) lead divergence-free ideal gas
results in the continuum limit, it clearly does not commute with the nonlocal chiral transformations
unless they are madeµ-dependent too. Its main advantage though could still be that the usual sign
function is used in this overlap operator.

3. Two simple ideas for the lattice QCD at finite density
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Figure 1: The energy density(left panel) in units ofT4 and the quark number susceptibility (right panel),
normalized to the continuum ideal gas value, as a function of1/N2

T for M values as indicated for lattices
with aspect ratio four.

Spurred by the results of the previous sections, we propose two simple ideas for simulations of
lattice QCD at finite density. Let us state them at the outset: 1) If chiral invariance and the anomaly
relation are to be only restored in the continuum limit, one may introduce the chemical potential on
the lattice in a simpler way and 2) known techniques in the literature to eliminate the free theory
related divergences may simplify the computations.

From the well-known relation between the domain wall fermions and the overlapfermions
[10, 11], we know that only fermions confined to the domain walls are physical. Introducing a
chemical potential only to count them, one has

Dov(µ̂)xy = (Dov)xy−
aµ̂

2a4 M

[

(1− γ4)U4(y)δx,y−4̂ +(γ4 +1)U†
4 (x)δx,y+4̂

]

. (3.1)

The chief advantage of eq.(3.1) is thatDov is defined by the usual sign-function for a Hermi-
tian matrix, making the computations simpler. Of course, it too breaks chiral invariance at the
same order as the Bloch-Wettig proposal. One has, however, to expecta−2-divergences asa→ 0.
Following the same prescription which is used for the pressure computation (which diverges at
zero temperature asΛ4 ), we use physical quantities computed on largeNT and the same lattice
spacinga for subtraction of these divergences. We tested this by considering two physical quan-
tities for the ideal gas, namely, the difference in the energy density due to nonzeroµ, defined by
∆ε(µ,T) = ε(µ,T)− ε(0,T) and the quark number susceptibility,χ = T/V ∂ 2 lnZ /∂ µ2.

Figure 1 shows the results for these quantities, where we usedµ/T = 0.5 for the∆ε andµ = 0
for theχ to compare with our earlier [4] results using the exponential prescription ofBloch-Wettig.
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Figure 2: The variation of fourth order susceptibility, normalized by its corresponding continuum value, as
a function of 1/N2

T for ζ = 4, M = 1.5 for A) µ̂/sand B)µ̂/M way of incorporating the chemical potential.

The zero temperature values were computed numerically on a lattice with a very large temporal
extentNT and fixeda4 such thatT = 1/(NTa4) → 0. The Matsubara frequencies then become
continuous and hence could be integrated upon numerically. TheM-values are as indicated along
the symbol used. From a comparison of the plots with the corresponding ones [4] for the Bloch-
Wettig case, we find that i) the zero temperature subtraction procedure does indeed eliminate the
divergences, ii) there are no oscillations for odd-even values ofNT , iii)the M-dependence is much
less pronounced, and iv) the scaling towards the continuum value is linearwith the possibility of
an easier extrapolation.

A further test of the subtraction procedure is that noadditionaldivergences should be seen in
other quantities as well, e.g., the fourth order susceptibility. Figure 2 demonstrates this to be the
case. The two curves shown are different possible ways of normalizingthe chemical potential term,
as indicated. Further improvements in the form to achieve a faster convergence to the continuum
needs to be explored.

Taking a cue from eq.(3.1), one can introduceµ in general by

SF = ∑
x,y

Ψ̄(x)M(µ;x,y)Ψ(y) = ∑
x,y

Ψ̄(x)D(x,y)Ψ(y)+ µa∑
x,y

N(x,y) , (3.2)

whereD can be the the staggered, the Wilson-Dirac or any other suitable fermion operator and
N(x,y) is the merely the corresponding point-split and gauge invariant number density. Clearly,
as above, one ought to be able to get rid of the annoying divergences by subtracting the same
physical quantity computed on largeNT and the same lattice spacinga. Usually, one would in-
troduce exp(±aµ) factors inM and not add theN term. Denoting by superscripted primes var-
ious derivatives with respect toaµ, one sees that the usual case hasM′ = M′′′... = ∑x,yN(x,y)
and M′′ = M′′′′ = M′′′′′′... 6= 0, i.e, all derivative terms contribute making the successive Tay-
lor coefficients have more and more terms. In contrast, eq.(3.2) leads toM′ = ∑x,yN(x,y), and
M′′ = M′′′ = M′′′′... = 0, i.e., a lot fewer terms in the Taylor coefficients. This could potentially
help in obtaining higher order coefficients than computed so far. For example, the 4th (8th) order
susceptibility, has 4th (8th) derivative ofM, which has only one (one) term for eq. (3.2) in contrast

6



P
o
S
(
L
A
T
2
0
0
9
)
1
7
7

Anomaly at finite density and chiral fermions on lattice Rajiv V. Gavai

to five (eighteen!) in the usual case [12]. Whether the subsequent reduction in the computations of
M−1 actually helps in speeding these computations is currently being investigated byus.

4. Summary

We showed, both perturbatively and non-perturbatively, that the introduction of nonzero chem-
ical potential,µ, leaves the anomaly unaffected. The zero modes of the Dirac operator for µ = 0
govern it. Nonzeroµ simply scales the eigenvectors, makes the right and left eigenvectors distinct
but together they still satisfy a completeness relation. We pointed out furtherthat the reason for
this can be traced to a “gauge-like” symmetry in the continuum using whichµ-dependent terms
can be “gauged” away. All the currently known prescriptions of introducing µ on lattice can be
understood in terms of a similar symmetry on the lattice, and ought to protect the anomaly if the
fermion regularization itself has it. While such a symmetry can be shown to exist for local actions,
it could be simply adopted for the nonlocal cases such as the overlap fermions. The resultant effec-
tive overlap operator for nonzeroµ also satisfies the Ginsparg-Wilson relation but unfortunately is
not invariant under the chiral transformation.

We also showed that investigating the overlap fermions at finite density by simplyadding
the µ-term linearly is feasible. It too has similar chiral symmetry breaking as the Bloch-Wettig
proposal but the corresponding inverse propagator is simpler and better-defined. Extending the
idea of addition ofµ linearly to the usual staggered fermion case was shown to open a possible
avenue for computations of higher order coefficients.
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