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1. Introduction

Since there are an equal numbetadt-handed andght-handed particles in the lattice fermion
propagator for each set of quantum numbers, there is no chiral ananalye lattice for the
naive fermions. Canonical local formulations, such as the Wilson fermibad{ogut-Susskind
fermions, the twisted mass fermions or the Creutz-Borici fermions breakabaufl singlet axial
U(1) and some or all of the flavour non-singlet axial symmetries. Thelagvdéermions, on the
other hand, preserve all chiral symmetries and have an index theonsgilas

Interestingly, chiral anomaly plays a crucial role in deciding the structtiteeoQCD phase
diagram for our world with two light quarks and one moderately heavylquér fundamental
aspect of the QCD phase diagram may be the existence of a critical poietlingh plane, where
Us denotes the baryonic chemical potential. The critical point is expected dpasig of chiral
symmetries and model considerations. Since we employ lattice techniques tigatesthe phase
diagram, the presence on those chiral symmetries on the lattice is desiretdreéfjnoed, in the
entireT-ug plane. The popular staggered fermions have a remnant chiral symmdirg tattice
but a not so well-defined flavour number; two flavours are simulated @ssguare root of the
fermion determinant for them. Clearly, use of overlap fermions with exacalceymmetry on
lattice is desirable.

Introduction of chemical potential for the overlap fermions turns out todwdrivial. Ideally,
one should construct the conserved chalgegs a first step and then simply adll to the action.
For the local fermions, this leads &2 divergences in the continuum limit in thermodynamic
gquantities such as the energy density or the number density. One usesdtienfr of adding
irrelevant terms to cure them by multiplying gauge links in positive/negative timeztibn by
exp(au) and exg—au) respectively or more general functions which satisfy certain conditions
[1]. Note that this modification, indeed even the simple additiopfdoes not change the chiral
invariance of the lattice action in anyway. The non-local nature of thdagvéermions makes this
construction difficult, possibly even non-unique [2]. It was propdsg&loch and Wettig [3] that
the same prescription of multiplying the gauge links, as above, may be usisdedhired them to
extend the definition of the sign function employed in the overlap operatoe #iwcargument of
the sign function, namely the Wilson-Dirac matrix, was no mgr@ermitian.

Banerjee, Gavai and Sharma [4] showed analytically that this prescripties bt have any
a2 divergences in the continuum limit but unfortunately the resultant ovedapién action has
no chiral invariance on the lattice for nonzguo Of course, it is restored in the continuum limit
but so it is for the simpler local Wilson fermions: in both cases the bare pasesref the action
such as the quark mass or the chemical potential will get renormalized paddien the coupling
g. Alternatively, one can modify the chiral transformation, again by terms lwinish in the
continuum limit, to restore the chiral invariance. This explains the results eotdiy Bloch and
Wettig that one even has an index theorem fonthdependent overlap Dirac operator: the anomaly
equation itself isu-dependent [3]. Our work presented in this talk was sparked by thestyr
about the fate of the anomaly relation in the continuum on the introduction afemorchemical
potential.

Before presenting our work let us remark, however, that the chartge thiral transformation
on the lattice implied by the Bloch-Wettig proposal is undesirable since it makeettezators of
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the transformation to be non-hermitian. Worse still, the symmetry group itsel§elsdar each and
every change oft, making this avenue not very useful for the original problem of investgaof

the QCD phase diagram in tie g plane. In order to appreciate the loss, recall that the symmetry
group remains theameat eachl for u = 0. Therefore, a study of the temperature dependence of
the order parametéry), and any abrupt change in it at the transition temperature, can reveal the
chiral symmetry restoring transition, if any, and thereby the change in tineenaf the vacuum.
Were the symmetry group to change as a functioh,af would be impossible to attribute a vanish-
ing chiral condensate uniquely as a change in the vacuum or a phasgeckizereby eliminating

the role of the chiral condensate as the order parameter. Thus onede&d inse the freedom of
adding terms irrelevant in the continuum limit to modify the chiral transformatiotheattice but
such a change should not rob one off the usual order parameteuflyirsy the chiral transition.

2. Anomaly atT = 0and u # 0in continuum

Classicallyy’ = exp(iays) ¢ andy/’ = ¢ exp(iays) is a symmetry for the QCD action for
massless quarks , leading to the current conservation equ%;}ﬂéh: 0. At finite temperature
and/or density, this classical symmetry remains intact. Quantum loop effectamd do, cause
corrections already a8t = u = 0, leading to the anomaly equation. One needs to con([zﬂgﬂg‘>
to check this. The famous calculation of the Adler-Bell-Jackiw(ABJ) triamiggram for the
U (1) case [5] demonstrated perturbatively that the aiél) is broken by quantum effects while
Fujikawa [6] provided a new insight by showing that the anomaly arisedalthe change of the
fermion measure under the corresponding transformation of the fermids firethe path integral
method. We have used both the methods to check the fate of the anomaly equétide density,
i.e, on introduction of a nonzero chemical potentict zero temperature.

2.1 Perturbative calculation

The lowest order diagram is the canonincal ABJ axial vector-veaotev(AVV) triangle di-
agram. It is well-known that the higher order diagrams do not contributestartbmaly equation
at zero density, neither do other diagrams like the square and pentagoandéa We too therefore
compute only AVV triangle diagram at finite density. Our notation for the QCDBraagian in the
Euclidean space with the finite number density term is the same as in [7]. Intordsaintain
consistency with the lattice literature, we have, however, chosen the Ciramg matrices to be
Hermitian, leading to the action,

_ 1 _
32_W(D+m)¢—§ﬁ FagFap + HYYAY , (2.1)

whereld = y, (9, — igA3T,) with T, being the generators of the SU(3) gauge group. fEhe
Viyeyaya is also hermitian in our case. Using the canonical Euclidean space Feynieanthe
amplitude of these AVV triangle diagrams can be computed. Denotinty'B§ (ks kz) the total
amplitude and contracting it witly,, the <d“j,5J> for u = 0 can be obtained from the triangle
diagrams foru # 0:

g H a d4 l 1
AP = —i gtr[T Tb}/(2n§)4Tr [V5¢_q_iuy4y0¢—b’(1—iﬂy4yp
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1 1
~ VY e m Y g uuy‘*ypw o—iny”
1 1
- stf—iuv“ypw—l%z—iuv“ya | (22)

An inspection of the eq.(2.2) reveals quadratically divergent integraishwdiffer from the
usual case by merely having# 0. The computation therefore can be done the same way by
writing [8] ayA*P7 = (—i) tr [TTP|g” [ G [F(P—ka ka) — f(prke) + f(p— ke ka) — f(p, k)]
for a suitably chosen functioh and mtroducmg a gauge-invariant cut-off. The nonzgrappears
in f in the denominator af ps — iu)? + 2] with linear in u and ap-independent term in the
numerator; the:? term vanishes being proportional to TyPy*y? y*yP] ~ €494, The final result
turns [8] out to be the same anomaly relation agfer0, since theu-dependent terms appear with
A1, and vanish as the cut-off — «. The same computation is easily generalized [8] to nonzero
temperatures.

2.2 Non-perturbative calculation

Fujikawa [6] taught us how to compute the chiral anomaly non-perturthatisgng the path
integral formalism. Under the chiral transformation of the fermion fields, thesone changes as

JUR'D)
(¢, )
The trace can be computed using the the eigenvectors of the opBratbis an anti-Hermitian
operator foru = 0 with purely imaginary eigenvalues and the corresponding eigenveotonsaf
complete orthonormal basis. Using the fég,[3} = 0, it is easy to show[8] that Ty = O for the
space of eigenvectors with nonzero eigenvalues, leading to the usyatTr, —n_ relation.

(u) still anti-commutes withs but has both an anti-Hermitian and a Hermitian term. Re-
markably, it turns out [8] still to be diagonalizable with right and left eigetwes which to-
gether form a complete set using which essentially the same argument asledds to the same
Tr ys =n, —n_ for u # 0 as well. Note that the zero modes are still defined with respect to
(u = 0). This should be contrasted with the index theorem for the overlap opgraiposed
by Bloch-Wettig where the zero modes agredependen{3]. This is perhaps natural since the
corresponding chiral transformationgisdependentas discussed above.

Curiously, a “gauge-like” symmetry, defined bynan-unitarytransformation of the fermion
fields, given by (x, T) = exp(ut) Y(x, 1), ¢ (X, 1) = P(x,T) exp(—ut) , eliminates all theu-
dependent terms of the QCD action. This transformation commutes with thetchirsfiormations,
explaining thus the preservation of the same anomaly relatiop #6r0. If one were to insist on
this symmetry on the lattice, then addition of a simphd is easily seen to be forbidden for any
local fermion action. Moreover, it can be easily implemented for any such lotiaha@and leads
naturally to all the known proposals [1] of introduction of the chemical potential ordtiee so
far.

While the symmetry clearly arises in the continuum due to the local nature of timéofe
action, one may choose to demand it for even non-local lattice actions. Aahatoposal then
for the overlap operator for nonzefois Doy () = exp(—UT) Doy(t = 0)exp(ut). While this

9T Y = 9T Dy Ded = 2 9y exp(—2ia/d4x Trys) . 2.3)
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can be shown to i) satisfy the Ginsparg-Wilson relation [9] and ii) lead damre-free ideal gas
results in the continuum limit, it clearly does not commute with the nonlocal chirafwamations
unless they are mage-dependent too. Its main advantage though could still be that the usual sign
function is used in this overlap operator.

3. Two simple ideas for the lattice QCD at finite density
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Figure 1: The energy density(left panel) in units ®f and the quark number susceptibility (right panel),
normalized to the continuum ideal gas value, as a functiohy/bF for M values as indicated for lattices
with aspect ratio four.

Spurred by the results of the previous sections, we propose two simpéfatesimulations of
lattice QCD at finite density. Let us state them at the outset: 1) If chiral imn@giand the anomaly
relation are to be only restored in the continuum limit, one may introduce the cHeroteatial on
the lattice in a simpler way and 2) known techniques in the literature to eliminate ghénirery
related divergences may simplify the computations.

From the well-known relation between the domain wall fermions and the ovigtagons
[10, 11], we know that only fermions confined to the domain walls are paksintroducing a
chemical potential only to count them, one has

afl
2a4 M

Dow( )y = (Dovhy — it [(1= ylUa(V)Sy 3+ (et DUF (08 ] - (3.1)

The chief advantage of eq.(3.1) is tHag, is defined by the usual sign-function for a Hermi-
tian matrix, making the computations simpler. Of course, it too breaks chiraliamee at the
same order as the Bloch-Wettig proposal. One has, however, to expedivergences as — 0.
Following the same prescription which is used for the pressure computatiinh(diverges at
zero temperature a&* ), we use physical quantities computed on lakgeand the same lattice
spacinga for subtraction of these divergences. We tested this by consideringhysical quan-
tities for the ideal gas, namely, the difference in the energy density duenerau, defined by
Ae(p,T)=¢g(u,T)—£(0,T) and the quark number susceptibiligy= T /V 9%In 2 /9 u?.

Figure 1 shows the results for these quantities, where wepg€d- 0.5 for theAe andy =0
for the x to compare with our earlier [4] results using the exponential prescriptiBfoch-Wettig.
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Figure 2: The variation of fourth order susceptibility, normalizegits corresponding continuum value, as
a function of N2 for { =4, M = 1.5 for A) ji/sand B)1/M way of incorporating the chemical potential.

The zero temperature values were computed numerically on a lattice with a vgeytéanporal
extentNr and fixedas such thatT = 1/(Nras) — 0. The Matsubara frequencies then become
continuous and hence could be integrated upon numericallyMFialues are as indicated along
the symbol used. From a comparison of the plots with the correspondirsg[4j#r the Bloch-
Wettig case, we find that i) the zero temperature subtraction proceduserdtsed eliminate the
divergences, ii) there are no oscillations for odd-even valuég; ofii)the M-dependence is much
less pronounced, and iv) the scaling towards the continuum value is itathe possibility of
an easier extrapolation.

A further test of the subtraction procedure is thatdalitional divergences should be seen in
other quantities as well, e.g., the fourth order susceptibility. Figure 2 denatessthis to be the
case. The two curves shown are different possible ways of normattenchemical potential term,
as indicated. Further improvements in the form to achieve a faster coneerge the continuum
needs to be explored.

Taking a cue from eq.(3.1), one can introdyucen general by

S =S WEOMEXY)WY) = T YD Y)WY) +Hay N(xy) (3.2)
Xy Xy Xy

whereD can be the the staggered, the Wilson-Dirac or any other suitable fermioatopand
N(x,y) is the merely the corresponding point-split and gauge invariant numbeitgle€learly,

as above, one ought to be able to get rid of the annoying divergencsshracting the same
physical quantity computed on larg and the same lattice spaciag Usually, one would in-
troduce expfapu) factors inM and not add thé\ term. Denoting by superscripted primes var-
ious derivatives with respect t@u, one sees that the usual case Nds= M"... = 3, N(x,y)
andM” = M"" = M"" .. =0, i.e, all derivative terms contribute making the successive Tay-
lor coefficients have more and more terms. In contrast, eq.(3.2) leads 4oy, N(x,y), and

M’ =M"=M".. =0, ie. alot fewer terms in the Taylor coefficients. This could potentially
help in obtaining higher order coefficients than computed so far. For deathe 4th (8th) order
susceptibility, has 4th (8th) derivative bf, which has only one (one) term for eq. (3.2) in contrast
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to five (eighteen!) in the usual case [12]. Whether the subsequarttied in the computations of
M~1 actually helps in speeding these computations is currently being investigated by

4. Summary

We showed, both perturbatively and non-perturbatively, that the inttézh of nonzero chem-
ical potential,u, leaves the anomaly unaffected. The zero modes of the Dirac operajor=®
govern it. Nonzerqu simply scales the eigenvectors, makes the right and left eigenvectorstdistinc
but together they still satisfy a completeness relation. We pointed out fuhthethe reason for
this can be traced to a “gauge-like” symmetry in the continuum using whidependent terms
can be “gauged” away. All the currently known prescriptions of intcidg ¢ on lattice can be
understood in terms of a similar symmetry on the lattice, and ought to protect ehsaénif the
fermion regularization itself has it. While such a symmetry can be shown to existdal actions,
it could be simply adopted for the nonlocal cases such as the overlap fexniibe resultant effec-
tive overlap operator for nonzegoalso satisfies the Ginsparg-Wilson relation but unfortunately is
not invariant under the chiral transformation.

We also showed that investigating the overlap fermions at finite density by siacglyng
the u-term linearly is feasible. It too has similar chiral symmetry breaking as thehBlgettig
proposal but the corresponding inverse propagator is simpler and-tefieed. Extending the
idea of addition ofu linearly to the usual staggered fermion case was shown to open a possible
avenue for computations of higher order coefficients.
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