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We study influence of center vortices on infrared propertiesof gluons in the deconfinement phase

of quenched QCD. We observe a significant suppression of the magnetic component of the gluon

propagator in the low-momentum region after the vortices are removed from the gluon configu-

rations. The propagator of the electric gluon stays almost unaffected by the vortex removal. Our

results demonstrate that the center vortices are responsible for important nonperturbative proper-

ties of the magnetic component of the quark-gluon plasma.
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1. Introduction

The quark-gluon plasma attracts a lot of attention nowadays due to a real feasibility to create
this unusual state of matter in heavy-ion collisions. The wide interest to this topicis additionally
heated by discoveries of interesting properties of the plasma (the very low viscosity of this sub-
stance is a well-known example [1]). Moreover, it seems plausible that the quark-gluon plasma
may contain exotic objects such as magnetic monopoles [2, 3] and magnetic vortices [2]. Both
the monopoles and the vortices constitute the nonperturbative magnetic component of the plasma.
In this paper we concentrate ourselves on the magnetic vortices. Our aim is todemonstrate from
the first principles that these objects are crucially important for the properties of the quark gluon
plasma, because the vortices affect long-range propagation of hot magnetic gluons.

Originally, the magnetic vortices were invoked to explain quark confinement inQCD (for a
review see Ref. [4]). The magnetic vortices are certain stringlike configuration of gluons which
populate the vacuum of non-Abelian gauge theories. According to the vortex picture, the confining
force between colored objects emerges due to spatial percolation of the magnetic vortex strings
because the vortices lead to certain amount of disorder. The value of the Wilson loop changes by a
center element of the gauge group if the magnetic vortex pierces the loop1. Therefore, very large
loops receive rapidly fluctuating contributions from the vortex ensembles.These fluctuations make
the average value of the Wilson loop very small. One can show that the suppression of the loop
follows an area law for very large loops implying a linear confining potential between a static quark
and an antiquark [4].

The relevance of the vortices to the confining properties of the vacuum can be demonstrated
using an elegant method of vortex removal [5]. The gluons in the non-Abelian field configurations
can be divided into the two parts: “gluons emerging due to the magnetic vortices” and “the rest”.
It turns out that if the vortices are removed, the remaining gluons cannot support the confining
force between the quarks and antiquarks, and the confinement is lost atlow temperatures [5]. On
the other hand, the long-distance confinement is unaffected by an inverse procedure which keeps
the vortices intact and removes “the rest” from the gauge field configurations. Thus, the magnetic
vortices carry crucial information about the quark confinement at low temperatures.

It was suggested in Ref. [2] that in the deconfinement (quark-gluon) phase the vortices be-
come real objects, as they form a magnetic component of the thermal plasma similarly to the
thermal monopoles. The vortices become real because they provide a large contribution to the
thermodynamics of the system according to the numerical simulations of Ref. [6].

Another known important property of the vortices is their role in the propagation of gluons
at zero temperature [7]. The presence of the vortices in the gluon ensembles enhance the gluon
propagators in the low-momentum region. As the vortices do not affect the high-momentum the
gluons, one concludes that the vortices are responsible for the long-distance gluon propagation.

In this paper we investigate the propagation of the gluons in the high-temperature gluon plasma
phase, which is interesting from the point of view of the heavy-ion collisionsat RHIC and LHC.
The gluon propagators in the deconfinement phase were studied in details inRef. [8]. In this paper
we combine the methods of Ref. [7] and Ref. [8] to find the effect of the magnetic vortices on the
propagation of the hot gluons. We found that the effect is not trivial.

1The “magnetic vortices” and the “center vortices” are the same objects in our terminology.
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2. Propagation of hot gluons

2.1 Gluon propagators

We define the gauge potentialA via the lattice link variableU in a standard way,

Aa
µ(x, t) =

1
2

TrσaUµ(x, t) . (2.1)

The gluon correlation function is given by the formula:

Dµν(x, t) =
〈

Aµ(0,0)A∗
ν(x, t)

〉

. (2.2)

We are interested in the momentum-space propagators which are given by a Fourier transform of
(2.2) evaluated either in the Coulomb (∂iAi = 0) or Landau (∂µAµ = 0) gauges.

We study the propagation of the gluons with the zero energy transfer,q0 = 0,

Dµν(~q,q0 = 0) =
1
Nt

∑
t

Dµν(~q, t) , (2.3)

whereNt is the temporal extent of the lattice.

At finite temperature the temporal component of (2.3) corresponds to the electric gluon,DE ∼

D00, while the propagator of the magnetic gluon is defined by the spatial correlations,DM ∼ Dii .
The masses corresponding to the electric and magnetic gluons can conveniently be calculated with
the help of, respectively,DE and DM propagators in the coordinate space (2.2) at large spatial
separations [8]. Here we study the momentum dependence of both electric and magnetic gluon
propagators in order to investigate the effect of the vortices both in the infrared (large distance) and
ultraviolet (short distance) regions.

2.2 Gluons at finite temperature

At finite temperature the electric and magnetic gluons behave differently. An electric gluon
demonstrates the color-screening of the Debye type. The corresponding potential is proportional
to exp(−meR)/R, whereR is the spatial separation. According to the perturbation theory the tem-
perature dependence of the electric mass isme ∼ g(T)T, whereg(T) is the running coupling at the
temperature scaleT.

It is hard to define the magnetic gluon propagator in the perturbative theorysince the magnetic
sector of QCD has a nonperturbative nature. The magnetic mass is an important quantity because it
serves as an infrared cutoff of a thermal QCD theory. In the scope of the dimensional reduction the
magnetic mass should scale asmm ∼ g2(T)T atT ≫ Tc. This temperature dependence agrees with
the recent lattice simulations in the temperature rangeT/Tc = 1.5∼ 6, Ref. [8]. The temperature
behavior of another nonperturbative quantity, the spatial string tension,is also understood in terms
of the magnetic scaling [9],σsp∼ [g2(T)T]2. Thus, the magnetic gluons play an important role in
the infrared physics of the deconfinement phase.
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2.3 Magnetic vortices

In order to identify the center vortex on the lattice we employ the direct maximal center gauge
(MCG) [10] in SU(2) gauge theory. The gauge condition is given by the maximization of the
functionalR[U ] over all possible gauge transformationsU →UΩ,

max
Ω

R[UΩ] , R[U ] =
1

VT ∑
x,t

Tr
[

Uµ(x, t)
]2

. (2.4)

The center gauge field is defined as theZ2-valued link fieldZµ(x) = sgnTr
[

Uµ(x)
]

= ±1 in the
MCG. If a Z2 plaquetteZx,µν = Zµ(x)Zν(x+ µ̂)Zµ(x+ ν̂)Zν(x) takes a negative value, then this
plaquette is pierced by a center vortex. A detailed review of the magnetic (center) vortices can be
found in Ref. [4].

The vortices can be removed using the de Forcrand-D’Elia procedure [5] which is formulated
as the redefinition of the original gauge field

Uµ(x) →U
′

µ(x) = Zµ Uµ(x) . (2.5)

The gauge fieldU ′ does not contain vortices. Numerical simulations show that the string tension
vanishes in the confinement phase after the removal of the center vortices[5]. The infrared propa-
gation of the cold gluons is also suppressed by the vortex removal [7]. Below we study the effect
of the vortices on the propagation of the hot gluons using the procedure (2.5).

3. Numerical Results

We simulate theSU(2) lattice theory in the quenched approximation. We generate 10∼ 30
gauge configurations per a fixed set of lattice couplings. We use several lattice volumesN3

s Nt with
varying spatial sizeNs = {12,20,24,32,48} and fixed temporal sizeNt = 4. We perform the MCG
and then Landau (or Coulomb) gauge fixing. The convergence criteria for the violation of the gauge
fixing conditions are set asε = 10−10 andε = 10−8, respectively. We work at two temperatures:
close to the transition,T ≈ 1.40Tc, and deeply in the deconfinement phase,T ≈ 6.0Tc (the later
regime may be realized at LHC/ALICE experiments).

3.1 Electric and magnetic gluons in Landau and Coulomb gauges

In Fig. 1 we demonstrate the electric and magnetic gluon propagators atT = 1.40Tc calculated
both at the original gluon configurationsU and at the gluon configurations without vortices,U ′,
Eq. (2.5). One immediately notices that the vortices do not affect the high momentum region of
both electric and magnetic propagators. This feature – which is in line with the zero-temperature
studies of Ref. [7] – is a natural consequence of the fact that the center vortices are nonperturbative
objects so that they may not play a role in the perturbative regime.

However, the magnetic vortices affect the long-distance propagation of the gluons. After the
removal of the vortices the magnetic propagator gets suppressed in the infrared region, Fig. 1(right).
The suppression of the infrared electric gluons is also visible [Fig. 1(left)], but this effect is much
less compared to the suppression in the magnetic sector.
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Figure 1: The electric (left) and magnetic (right) gluon propagatorsas functions of the spatial momentum.
The calculations are done in the Landau gauge using originaland vortex removed gauge field configurations.
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Figure 2: The same as in Fig. 1 but in the Coulomb gauge. Notice the logarithmic scale of the ordinate axis.

Thus, the center vortices are related to the magnetic sector of quark-gluonplasma phase as
it was suggested in Ref. [2]. The vortices support the long-distance propagation of the magnetic
gluons and they may be responsible for the low viscosity of the QCD plasma [2].

We also studied the propagation of the hot gluons in the Coulomb gauge2. Our numeri-
cal results are shown in Fig. 2. It is interesting to note that the removal of thevortices has a
renormalization-like effect on the electric gluons. The electric propagatoris scaled by a constant
factor which is visibly independent on the momentum. The propagator of the magnetic gluon in
the Coulomb gauge is suppressed in the infrared region similarly to the magnetic propagator in
the Landau gauge. Thus, the effect of the infrared suppression is common for the Landau and
Coulomb gauges. Below we continue the discussion of the gluon propagators concentrating only
on the Landau gauge.

2Note that our gauge field configurations are additionally fixed by the temporal gauge fixing that maintain the
Coulomb gauge property (for the details one can consult Ref. [8]).
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Figure 3: The vortex removal: effects of high temperatures (left) andlarge lattices (right).

In Fig. 3(left) we show the magnetic and electric propagators at high temperature,T ≈ 6.0Tc.
There is almost no effect of the vortex removal on the electric propagator. However, as expected,
the magnetic propagator is affected by the vortices in the infrared region: the removal of the vortices
leads to the suppression of gluons with low momenta. The value of the propagator of the magnetic
gluons (calculated either with or without vortices) in the infrared region is larger compared to the
propagator of the electric gluons in the same region.

3.2 Volume and Gribov copy effects

In general, the propagators at the low momentum region can be influenced by the finite volume
corrections. We checked the stability of our results against the variation ofthe volume of the system
in Fig. 3(right). Since the data taken at different volumes follow the same curves within error bars,
we conclude that both original and vortex-removed configurations are independent of the volume.
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Figure 4: A check of the MCG-related Gribov copy effects on the gluon propagator in a small volume.

Another source of error may come from the Gribov copy problem: the global minimization
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of the functional (2.4) cannot be achieved exactly using the numerical methods, while the gluon
propagator may be affected by the choice of the minimum. In Fig. 4 we check therobustness of our
results against the number of the Gribov copies given by the number of the starting configurations
generated by random gauge transformations (RGT). One can see that the qualitativebehavior of
the propagators is not affected by the number of the Gribov copies neitherfor original nor for the
vortex-removed configurations.

4. Summary

We found that the presence of the magnetic vortices enhances the propagator of the magnetic
gluons in the low-momentum region at finite-temperature. Alternatively, one can formulate this
statement as follows: the vortex removal procedure suppresses the magnetic propagator at low
momenta. This effect is found both near the phase transition atT = 1.40Tc and in the deep quark-
gluon plasma phase atT = 6.0Tc. The propagation of the electric gluon stays almost unaffected by
the vortices (the small effect of vortices is visible close to the critical temperature and is not seen
at the high temperature). We checked that influence of the vortices on the propagation of the hot
gluons is not shadowed by the finite volume or the Gribov copies effects.

In Ref. [2] the magnetic vortices were suggested to form a light (i.e., low-mass) component of
the gluon plasma, and therefore their removal should naturally suppress the long-distance propaga-
tion of the magnetic gluons. Our numerical results demonstrate that the center vortices are indeed
responsible for important nonperturbative properties of the magnetic component of the quark-gluon
plasma.
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