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Lattice QCD has the well-known sign problem at real chemical potential. One approach to

circumvent the problem is the analytic continuation from imaginary chemical potential to real
one. We propose a hew analytic continuation by using the Polyakov-loop extended Nambu—-Jona-
Lasinio (PNJL) model. The partition function of QCD has the Roberge-Weiss (RW) periodicity in
the imaginary chemical potential region. We reveal that the PNJL model has the RW periodicity.
Strength parameters of the vector-type four-quark and scalar-type eight-quark interactions are de-
termined so as to reproduce lattice data on pseudocritical temperatures of the deconfinement and
chiral transitions in the imaginary chemical potential region. The QCD phase diagram in the real
chemical potential region is predicted by the PNJL model. The critical endpoint survives, even if
the vector-type four-quark interaction is taken into account.
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1. Introduction

Quantum chromodynamics (QCD) is a remarkable theory. It is renormalizable and essentially
parameter free. QCD accounts for the rich phenomenology of hadronic and nuclear physics. Ther-
modynamics of QCD is also well defined. Nevertheless, it is not well known because of its non-
perturbative nature. In particular, the QCD phase diagram is essential for understanding not only
natural phenomena such as compact stars and the early universe but also laboratory experiments
such as relativistic heavy-ion collisions.

Unfortunately, quantitative calculations of the phase diagram from the first-principle lattice
QCD (LQCD) have the well-known sign problem when the chemical potentigis(real. So far,
several approaches have been proposed to circumvent the difficulty; for example, the reweighting
method, the Taylor-expansion method, and the analytic continuation to real chemical potgitial (
from imaginary chemical potentiaji() [1]. However, those are still far from perfection.

As an approach complementary to the first-principle LQCD, we can consider effective mod-
els such as the Nambu—Jona-Lasinio (NJL) model and the Polyakov-loop extended Nambu—Jona-
Lasinio (PNJL) model [2,3]. The NJL model describes the chiral symmetry breaking, but not the
confinement mechanism. The PNJL model can treat the deconfinement transition as well as the
chiral symmetry restoration. In the NJL-type models, the input parameters are deternjinedat
andT > 0, where T is temperature. It is then highly nontrivial whether the models predict properly
dynamics of QCD at finiteir. This should be tested from QCD. Fortunately, this is possible in the
L region, since LQCD has no sign problem there. Therefore, the reliability of effective models at
finite LR can be tested in thg region.

Roberge and Weiss found [4] that the QCD partition funciigap(6) at imaginary chemical
potentialyy =i6T has a periodicityocp(8) = Zocp(8 + 211/3), showing thaZocp(0 + 211/3)
is transformed int&Zgcp(0) by the Zs transformation with integek. This means that QCD is
invariant under a combination of tt#%&; transformation and a parameter transformation- 6 +
21/3,

q—Ug, A, —>UAVU*1—I§(0\,U)U*1, 6 6+2m/3 (1.1)

whereU (x, T) are elements dBU(3) with U (x,1/T) = exp(—2irtk)U (x,0) and q is the quark field.
We call this combination the extendé&i} transformation. ThusZqcp(6) has the extendefs
symmetry, and hence quantities invariant under the exteAgé&dnsformation have the Roberge-
Weiss (RW) periodicity. At the present stage, the PNJL model is only a realistic effective model
that possesses both the extendgdsymmetry and chiral symmetry [5]. This property guarantees
that the phase diagram evaluated by the PNJL model has the RW periodicity in the imaginary
region, and therefore makes it possible to compare the PNJL model with LQCD quantitatively in
the 1y region. If the PNJL model succeeds in reproducing the lattice data, we may think that the
PNJL model will predict, with high reliability, the QCD phase structure inglheegion [5].

The extended.z symmetry in QCD is a remnant of th& symmetry, namely the confinement
mechanism, in the pure gauge system. The extefldexsymmetry appears as the RW periodicity
in the u; region and implicitly affects dynamics in the region. Actually, the mechanism largely
shifts the critical endpoint toward high@&rand loweru than the NJL model predicts.
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In contrast, the vector-type four-quark interacti®p(qy,q)? largely moves the critical end-
point in the opposite direction, if it is newly added to the PNJL model. Thus, it is essential to
determine the strength of the coupli@g of the vector-type interaction, although the interaction is
often ignored in the PNJL calculations. The strengtipitan be determined from lattice data on
the chiral transition in they region [5].

2. PNJL Model
The two-flavor PNJL Lagrangian in Euclidean spacetime is
& = qliyyDy — yakt +mo)d — Gs[(G6)° + (aiys )] + Up(P[A], @A, T), (2.1)

whereq denotes the two-flavor quark fieldy does the current quark mass, dbg= d, —iA,,

A = gAf‘l’\—zaém with the gauge fieldA3, the Gell-Mann matrixA2, and the gauge coupling g. In

the NJL sectorGs denotes the coupling constant of the scalar-type four-quark interaction. Later,
we will add the vector-type four-quark interaction and the scalar-type eight-quark interaction to the
PNJL Lagrangian [5]. The Polyakov potentid}, defined in (2.4), is a function of the Polyakov
loop ® and its Hermitian conjugat®*,

1/T

1 L rrlt, with L(x) = exp]] /0 drAu(x, 7)) 2.2)

b= N—CTrCL, P* = N
where &2 is the path ordering. In the chiral limitrg = 0), the Lagrangian density has the exact
SU(Nf)r x SU(Nf)L x U(1)y x SU(3)c symmetry. In the Polyakov gaugk,can be written in a
diagonal form in color spade= diag(é®/T,é%/T d®/T). The Polyakov loopb is an exact order
parameter of the spontaneotis symmetry breaking in the pure gauge theory. AlthoughZbe
symmetry is not exact in the system with dynamical quarks, it still seems to be a good indicator of
the deconfinement transition. Therefore, we ¢s® define the deconfinement transition.

Making the mean field approximation and performing the path integral over quark field, one
can obtain the thermodynamic poten@alvith imaginaryp,

d°p A iAw)/T
Q=Up+Uy—-2 /— Negs(p)+T In det(1+ LA e (&r(P)—iAm)/Ty | (2.3)
2 2, ]
whereg; = /p2+ M?, M = mg— 2Gs0%, Uy = Gsaf2 andos = (qsqs). In this case, we consider

two degenerate flavors, so att are degeneratedsf = o). In (2.3), only the third term of the
right-hand side diverges. It is then regularized by the three dimensional momentum/cutté
useUp of Ref. [3] that is fitted to a LQCD simulation in the pure gauge theory at finite T:

Up = T4[—a(2T)q>*cb+ b(T)IN[1— 60*® + 4(P° + 3) — 3(<D*d>)2]} ,

a(T) =351 2.47(%) v 15.2(%)2, b(T) = —1.75@)3. (2.4)

The Polyakov potential yields a first-order deconfinement phase transitiba=af, in the pure
gauge theory. The original value ©f is 270 MeV evaluated by the pure gauge LQCD calculation.
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However, the PNJL model with this value ©f yields a somewhat larger value of the transition
temperature at zero chemical potential than the full LQCD simulation [6]. Therefore, we rescale
To to 212 MeV, the detail will be shown in Sec. 3.1.

The PNJL thermodynamic potenti@l of (2.3) is invariant under the extendgg transforma-
tion,

L—e 23 9=y /T— 6+2mk/3, (2.5)

thereforeQ has the RW periodicity. The left panel of Fig. 1 shows the PNJL thermodynamic
potentialQ as a function o in two cases off = 170 and 190 MeV. The potentifl is smooth
everywhere in the lowl case, but not ad = (2k+ 1)71/3 in the highT case. This result is
consistent with the RW prediction [4] and lattice simulation [1] on éhend theT dependence of
the QCD thermodynamic potential. Furthermore, we can define the extégdaegriant quantities

Y = e "9 calledW as the modified Polyakov loop.
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Figure 1: Left panel; The PNJL thermodynamic potenti@las a function of. The dashed line corresponds
to the case off = 170 MeV and the solid one to that &= 190 MeV. Right panel; Chiral condensate
normalized byoy and the absolute value of the Polyakov lody. The thick (thin) curves represent the
PNJL result of parameter set B (A) with (without) the scalar-type eight-quark interactig®|) is denoted
by the dashed (solid) curves. Lattice ddfg)(on o and thosexX ) on|®| are taken from Ref. [6]. The lattice
data are plotted with a 10% error bar, since lattice calculations have 10% error in deterfgiféhg

3. Comparision between PNJL and LQCD

3.1 Thermal system with no chemical potential

First, we consider the thermal system with no chemical potential to determine the parameters,
mo, Gs, /A, andTp, of the PNJL model. In the lattice calculations [6], the pseudocritical temperature
T2 of the crossover chiral transition coincides with tfigt of the crossover deconfinement one
within 10% error:T? ~ T® ~ 173+ 8 MeV.

The parameter sefy = 6315 MeV, Gs = 5.498 GeV 2, andmy = 5.5 MeV, can reproduce
the pion decay constarff; = 93.3 MeV and the pion maskl; = 138 MeV atT = u =0, and
keeps a good reproduction LQCD data at fifit¢3]. We then adopt these values rGs, and
mo. We adjusfTy so that the PNJL calculation can reproduce the lattice r@sui 173 MeV. The
parameter set thus determined is shown as set A in Table 1.
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The right panel of Fig. 1 shows the chiral condensate normalizeghby o|t—,—o and the
absolute value of the Polyakov lo@pas a function off /Tc. In this papefT; is always taken to be
173 MeV. The thin curves represent PNJL results of parameter set A, where-0.0302 Ge\?
in this case. LQCD data [6] are also plotted by cross symbols with a 10% errootand ||
measured as a function &f/T; in Refs. [6] have only small errors, but we have added 10% error
that the lattice calculation [6] has in determinifig For |®|, the PNJL result (thin solid curve)
reasonably agrees with the lattice ome)( For o, however, the PNJL result (thin dashed curve)
considerably overshoots the lattice d&fa)( The PNJL results of parameter set A gi€/T. =
1.25 andT /T = 1, while the lattice simulations yiel’ /T, = 14-0.05 andT® /T, = 14 0.05.

The PNJL results are consistent with the lattice one3farbut not forTS.

In order to solve this problem, we introduce the scalar-type eight-quark intera@tiggqg)2 -+
(qiysTq)?)? [5]. Sincef,;andM, calculated with PNJL depend on the strengtised, for each value
of Gsg the strength o5 is readjusted so as to reproduce the measured vajue93.3 MeV and
M, = 138 MeV. AsGggincreases from zerd@? calculated with PNJL decreases towdgd= 173
MeV. WhenGgg = 45212GeV 8, the ratioTZ /T, becomes 1.05 and hence, consistent with the
corresponding lattice result within 10% error. We adopt this strength. This parameter set is shown
as set B in Table 1.

3.2 Thermal system with imaginary chemical potential

In this subsection, we consider the thermal system with finite imaginary chemical potential
and compare the PNJL result with the lattice data [1] in which the lattice siz&s48and the
two-flavor Kogut-Susskind and Wilson fermions are considered.

The left panel of Fig. 2 shows the phase diagram of the chiral and deconfinement transitions in
the 6 — T plane, wherd is divided byrt/3 andT is normalized byl = 173 MeV. The lattice data
[1] are shown with 10% error thdt has [6]. The lattice simulations [1] point out thRf agrees
with TC‘D within numerical errors in the entire region<06 < 271/3. Thin, thick, and bold curves
are results of the PNJL calculations with sets A, B, and C, respectively.

set G Gss Gy
A 5.498GeV 2 0 0
B 4.673GeV?2  452.12GeV?8 0

C 4.673GeV?  452.12GeV?® 4.673GeV?2

Table 1. Summary of the parameter sets in the PNJL calculations. The paramfigtaygandTo are common
among the three set;= 6315 MeV, my = 5.5 MeV andTy = 212 MeV.

The phase diagram has a periodicity @f/3 in 8. This is called the RW periodicity [4,5]. The
phase diagram is al#® even, because so . On the dot-dashed line going up from an endpoint
(Brw, Trw) = (71/3,1.09T;), the quark-number density and the phase of the Polyakov loop
are discontinuous in the PNJL calculations [5]. This is called the RW phase transition. The right
panel of Fig. 2 show$ dependence ap for four cases off /T, = 0.97,1.01,1.04, and 1.10. The
PNJL results (curves) well reproduce the lattice data [1] (symbols). Itis found that is continuous at
8 = /3 in the low-T case ol < Trw = 1.09T, but it is discontinuous & = 71/3 in the high-T
case ofT > Tgrw.
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In the entire region & 6 < 271/3, the eight-quark interaction mové§ down from the thin
dashed curve (set A) to the thick one (set B). However, the thick dashed curve still overshoots
the lattice result (symbols) with 10% error ne@r= r11/3. In order to solve this problem, we
introduce the vector-type four-quark interactionGy (qy,q)? [5]. As mentioned in Ref. [5], the
phase structure in the real chemical potential region is quite sensitive to the strength of the coupling
Gy. Itis then important to determine the strength, but it has not been done yet. Since the vector-type
interaction does not affect the physical quantitieg at 0, we can simply add the interaction to set
B. As G, increases from zer@? goes down towardy?, while T® moves little. WherG, = Gs,
the thick dashed curve (set B) goes down to the bold one (set C) and consists with the lattice result
[1]. Thus, the PNJL calculations with set C can reproduce the lattice result [1] thatincides
with TC‘D within numerical errors in the entire regiork06 < 271/3.
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Figure 2: Left panel; Phase diagrams of the chiral phase transition in the imaginary chemical potential
region calculated with three parameter sets are presented by dashed curves; thin, thick, and bold ones are
results of the PNJL calculations with set A, B, and C, respectively. Lattice data [1] are shown with 10error
that Tc has [41]. The deconfinement phase transition curve (bold solid curve) and the RW phase transition
lines (bold dot-dashed lines) calculated with set C are also shown for comparidight panel; Phase of
the Polyakov loop as a function 6fat various temperatures. Lattice data [1] are plotted by symbols. Curves
represent results of PNJL calculations with set A.
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4. Prediction of the phase diagram at real chemical potential

Figures 3(a) and 3(b) represent the phase diagrams im%heT plane predicted by the PNJL
calculations with parameter sets A and C, respectively. On the solid curve between points E and D,
both the first-order chiral and deconfinement phase transitions take place simultaneously, and hence
point E is the critical endpoint of these phase transitions. The dot-dashed curve moving up from
point | represents the RW phase transition of first order, and then point | is the critical endpoint
of the RW phase transition. The dashed curve between points H and E means the crossover chiral
transition, while the long-dashed curve between points | and E does the crossover deconfinement
phase transition. Point F (G) is a crossing point between the dashed (longdashed) curve and the
U = 0 axis. Cross symbols with error bars indicate LQCD data [1].

Figure 3 (b) is most reliable, since the PNJL result with parameter sets C is consistent with the
LQCD one [1] in theu? < 0 region. Comparing Figs. 3 (a) and 3 (b), one can see that the scalar-
type eight-quark interaction and the vector-type four-quark interaction give sizable effects on the
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set D E F H [
A (2.02, 0.00) (1.84,0.72) (0.00, 1.25) imf3x 1.53,1.53) (1/3x1.09, 1.09)
C (1.80, 0.00) (1.51,0.72) (0.00, 1.05) im(3x1.13,1.13) (/3% 1.07,1.07)

Table 2: Positions of points D-1 inu-T plane. The positions of these points are normalize@g3., T /Tc)
with Tc = 173 MeV. Both set A and set C have the same position of point G; (0.00,1.00).

phase structure. In particular for the critical endpoint E, the eight-quark interaction shifts point E to
larger T and smallept, and the vector-type interaction moves it in the opposite direction. Positions
of points D-I are summarized in Table 2. The critical endpoint does not disappear in virtue of the
eight-quark interaction, even if the vector-type interaction is taken into account.
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Figure 3: Phase diagram in the real and imaginary chemical potential region. Panels (a) and (b) are calcu-
lated with the parameter sets A and C, respectively. Cross symbols with error bars indicate the lattice data

taken from Ref. [1]. Points D-I are explained in the text.
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