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Lattice QCD has the well-known sign problem at real chemical potential. One approach to

circumvent the problem is the analytic continuation from imaginary chemical potential to real

one. We propose a new analytic continuation by using the Polyakov-loop extended Nambu–Jona-

Lasinio (PNJL) model. The partition function of QCD has the Roberge-Weiss (RW) periodicity in

the imaginary chemical potential region. We reveal that the PNJL model has the RW periodicity.

Strength parameters of the vector-type four-quark and scalar-type eight-quark interactions are de-

termined so as to reproduce lattice data on pseudocritical temperatures of the deconfinement and

chiral transitions in the imaginary chemical potential region. The QCD phase diagram in the real

chemical potential region is predicted by the PNJL model. The critical endpoint survives, even if

the vector-type four-quark interaction is taken into account.
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1. Introduction

Quantum chromodynamics (QCD) is a remarkable theory. It is renormalizable and essentially
parameter free. QCD accounts for the rich phenomenology of hadronic and nuclear physics. Ther-
modynamics of QCD is also well defined. Nevertheless, it is not well known because of its non-
perturbative nature. In particular, the QCD phase diagram is essential for understanding not only
natural phenomena such as compact stars and the early universe but also laboratory experiments
such as relativistic heavy-ion collisions.

Unfortunately, quantitative calculations of the phase diagram from the first-principle lattice
QCD (LQCD) have the well-known sign problem when the chemical potential (µ) is real. So far,
several approaches have been proposed to circumvent the difficulty; for example, the reweighting
method, the Taylor-expansion method, and the analytic continuation to real chemical potential (µR)
from imaginary chemical potential (µI) [1]. However, those are still far from perfection.

As an approach complementary to the first-principle LQCD, we can consider effective mod-
els such as the Nambu–Jona-Lasinio (NJL) model and the Polyakov-loop extended Nambu–Jona-
Lasinio (PNJL) model [2,3]. The NJL model describes the chiral symmetry breaking, but not the
confinement mechanism. The PNJL model can treat the deconfinement transition as well as the
chiral symmetry restoration. In the NJL-type models, the input parameters are determined atµ = 0
andT > 0, where T is temperature. It is then highly nontrivial whether the models predict properly
dynamics of QCD at finiteµR. This should be tested from QCD. Fortunately, this is possible in the
µI region, since LQCD has no sign problem there. Therefore, the reliability of effective models at
finite µR can be tested in theµI region.

Roberge and Weiss found [4] that the QCD partition functionZQCD(θ) at imaginary chemical
potentialµI = iθT has a periodicityZQCD(θ) = ZQCD(θ + 2π/3), showing thatZQCD(θ + 2π/3)
is transformed intoZQCD(θ) by theZ3 transformation with integerk. This means that QCD is
invariant under a combination of theZ3 transformation and a parameter transformationθ → θ +
2π/3,

q→Uq, Aν →UAνU−1− i
g
(∂νU)U−1, θ → θ +2π/3, (1.1)

whereU(x,τ) are elements ofSU(3) with U(x,1/T) = exp(−2iπk)U(x,0) and q is the quark field.
We call this combination the extendedZ3 transformation. Thus,ZQCD(θ) has the extendedZ3

symmetry, and hence quantities invariant under the extendedZ3 transformation have the Roberge-
Weiss (RW) periodicity. At the present stage, the PNJL model is only a realistic effective model
that possesses both the extendedZ3 symmetry and chiral symmetry [5]. This property guarantees
that the phase diagram evaluated by the PNJL model has the RW periodicity in the imaginaryµI

region, and therefore makes it possible to compare the PNJL model with LQCD quantitatively in
the µI region. If the PNJL model succeeds in reproducing the lattice data, we may think that the
PNJL model will predict, with high reliability, the QCD phase structure in theµR region [5].

The extendedZ3 symmetry in QCD is a remnant of theZ3 symmetry, namely the confinement
mechanism, in the pure gauge system. The extendedZ3 symmetry appears as the RW periodicity
in theµI region and implicitly affects dynamics in theµR region. Actually, the mechanism largely
shifts the critical endpoint toward higherT and lowerµ than the NJL model predicts.
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In contrast, the vector-type four-quark interactionGv(q̄γνq)2 largely moves the critical end-
point in the opposite direction, if it is newly added to the PNJL model. Thus, it is essential to
determine the strength of the couplingGv of the vector-type interaction, although the interaction is
often ignored in the PNJL calculations. The strength ofGv can be determined from lattice data on
the chiral transition in theµI region [5].

2. PNJL Model

The two-flavor PNJL Lagrangian in Euclidean spacetime is

L = q̄(iγνDν − γ4µ +m0)q−Gs[(q̄q]2 +(q̄iγ5⃗τq)2]+Up(Φ[A],Φ∗[A],T), (2.1)

whereq denotes the two-flavor quark field,m0 does the current quark mass, andDν = ∂ν − iAν ,
Aν = gAa

4
λa
2 δν4 with the gauge fieldAa

ν , the Gell-Mann matrixλ a, and the gauge coupling g. In
the NJL sector,Gs denotes the coupling constant of the scalar-type four-quark interaction. Later,
we will add the vector-type four-quark interaction and the scalar-type eight-quark interaction to the
PNJL Lagrangian [5]. The Polyakov potentialUp, defined in (2.4), is a function of the Polyakov
loop Φ and its Hermitian conjugateΦ∗,

Φ =
1
Nc

TrcL, Φ∗ =
1
Nc

TrcL
†, with L(x) = P exp

[
i
∫ 1/T

0
dτA4(x,τ)

]
, (2.2)

whereP is the path ordering. In the chiral limit (m0 = 0), the Lagrangian density has the exact
SU(Nf )R×SU(Nf )L ×U(1)v ×SU(3)c symmetry. In the Polyakov gauge,L can be written in a
diagonal form in color spaceL = diag(eiφa/T ,eiφb/T ,eiφc/T). The Polyakov loopΦ is an exact order
parameter of the spontaneousZ3 symmetry breaking in the pure gauge theory. Although theZ3

symmetry is not exact in the system with dynamical quarks, it still seems to be a good indicator of
the deconfinement transition. Therefore, we useΦ to define the deconfinement transition.

Making the mean field approximation and performing the path integral over quark field, one
can obtain the thermodynamic potentialΩ with imaginaryµI ,

Ω = Up +UM −2∑
f

∫
d3p

(2π)3

[
Ncε f (p)+T ∑

λ=±1

ln detc(1+Lλ e−(ε f (p)−iλ µI)/T)
]
, (2.3)

whereε f =
√

p2 +M2
f , M f = m0−2Gsσ f , UM = Gsσ2

f andσ f = ⟨q̄f qf ⟩. In this case, we consider
two degenerate flavors, so allσ f are degenerated (σ f = σ ). In (2.3), only the third term of the
right-hand side diverges. It is then regularized by the three dimensional momentum cutoffΛ. We
useUp of Ref. [3] that is fitted to a LQCD simulation in the pure gauge theory at finite T:

Up = T4
[
−a(T)

2
Φ∗Φ+b(T)ln[1−6Φ∗Φ+4(Φ3 +Φ3)−3(Φ∗Φ)2]

]
,

a(T) = 3.51−2.47
(T0

T

)
+15.2

(T0

T

)2
, b(T) = −1.75

(T0

T

)3
. (2.4)

The Polyakov potential yields a first-order deconfinement phase transition atT = T0 in the pure
gauge theory. The original value ofT0 is 270 MeV evaluated by the pure gauge LQCD calculation.
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However, the PNJL model with this value ofT0 yields a somewhat larger value of the transition
temperature at zero chemical potential than the full LQCD simulation [6]. Therefore, we rescale
T0 to 212 MeV; the detail will be shown in Sec. 3.1.

The PNJL thermodynamic potentialΩ of (2.3) is invariant under the extendedZ3 transforma-
tion,

L → e−i2πk/3L, θ = µI/T → θ +2πk/3, (2.5)

thereforeΩ has the RW periodicity. The left panel of Fig. 1 shows the PNJL thermodynamic
potentialΩ as a function ofθ in two cases ofT = 170 and 190 MeV. The potentialΩ is smooth
everywhere in the lowT case, but not atθ = (2k + 1)π/3 in the highT case. This result is
consistent with the RW prediction [4] and lattice simulation [1] on theθ and theT dependence of
the QCD thermodynamic potential. Furthermore, we can define the extendedZ3 invariant quantities
Ψ = e−iθ Φ calledΨ as the modified Polyakov loop.
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Figure 1: Left panel; The PNJL thermodynamic potentialΩ as a function ofθ . The dashed line corresponds
to the case ofT = 170 MeV and the solid one to that ofT = 190 MeV. Right panel; Chiral condensate
normalized byσ0 and the absolute value of the Polyakov loop|Φ|. The thick (thin) curves represent the
PNJL result of parameter set B (A) with (without) the scalar-type eight-quark interaction;σ (|Φ|) is denoted
by the dashed (solid) curves. Lattice data (＋) onσ and those (×) on |Φ| are taken from Ref. [6]. The lattice
data are plotted with a 10% error bar, since lattice calculations have 10% error in determiningTc [6].

3. Comparision between PNJL and LQCD

3.1 Thermal system with no chemical potential

First, we consider the thermal system with no chemical potential to determine the parameters,
m0, Gs, Λ, andT0, of the PNJL model. In the lattice calculations [6], the pseudocritical temperature
Tσ

c of the crossover chiral transition coincides with thatTΦ
c of the crossover deconfinement one

within 10% error:Tσ
c ≈ TΦ

c ≈ 173±8 MeV.
The parameter set,Λ = 631.5 MeV, Gs = 5.498 GeV−2, andm0 = 5.5 MeV, can reproduce

the pion decay constantfπ = 93.3 MeV and the pion massMπ = 138 MeV atT = µ = 0, and
keeps a good reproduction LQCD data at finiteT [3]. We then adopt these values forΛ,Gs, and
m0. We adjustT0 so that the PNJL calculation can reproduce the lattice resultTΦ

c = 173 MeV. The
parameter set thus determined is shown as set A in Table 1.
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The right panel of Fig. 1 shows the chiral condensate normalized byσ0 = σ |T=µ=0 and the
absolute value of the Polyakov loopΦ as a function ofT/Tc. In this paperTc is always taken to be
173 MeV. The thin curves represent PNJL results of parameter set A, whereσ0 = −0.0302 GeV3

in this case. LQCD data [6] are also plotted by cross symbols with a 10% error bar;σ and |Φ|
measured as a function ofT/Tc in Refs. [6] have only small errors, but we have added 10% error
that the lattice calculation [6] has in determiningTc. For |Φ|, the PNJL result (thin solid curve)
reasonably agrees with the lattice one (×). For σ , however, the PNJL result (thin dashed curve)
considerably overshoots the lattice data (＋). The PNJL results of parameter set A giveTσ

c /Tc =
1.25 andTΦ

c /Tc = 1, while the lattice simulations yieldTσ
c /Tc = 1±0.05 andTΦ

c /Tc = 1±0.05.
The PNJL results are consistent with the lattice ones forTΦ

c , but not forTσ
c .

In order to solve this problem, we introduce the scalar-type eight-quark interaction,Gs8[(q̄q)2+
(q̄iγ5⃗τq)2]2 [5]. Since fπ andMπ calculated with PNJL depend on the strength ofGs8, for each value
of Gs8 the strength ofGs is readjusted so as to reproduce the measured valuesfπ = 93.3 MeV and
Mπ = 138 MeV. AsGs8 increases from zero,Tσ

c calculated with PNJL decreases towardTc = 173
MeV. WhenGs8 = 452.12GeV−8, the ratioTσ

c /Tc becomes 1.05 and hence, consistent with the
corresponding lattice result within 10% error. We adopt this strength. This parameter set is shown
as set B in Table 1.

3.2 Thermal system with imaginary chemical potential

In this subsection, we consider the thermal system with finite imaginary chemical potential
and compare the PNJL result with the lattice data [1] in which the lattice size is 83 × 4 and the
two-flavor Kogut-Susskind and Wilson fermions are considered.

The left panel of Fig. 2 shows the phase diagram of the chiral and deconfinement transitions in
theθ −T plane, whereθ is divided byπ/3 andT is normalized byTc = 173 MeV. The lattice data
[1] are shown with 10% error thatTc has [6]. The lattice simulations [1] point out thatTσ

c agrees
with TΦ

c within numerical errors in the entire region 0≤ θ ≤ 2π/3. Thin, thick, and bold curves
are results of the PNJL calculations with sets A, B, and C, respectively.

set Gs Gs8 Gv

A 5.498GeV−2 0 0

B 4.673GeV−2 452.12GeV−8 0

C 4.673GeV−2 452.12GeV−8 4.673GeV−2

Table 1: Summary of the parameter sets in the PNJL calculations. The parametersΛ, m0 andT0 are common
among the three sets;Λ = 631.5 MeV, m0 = 5.5 MeV andT0 = 212 MeV.

The phase diagram has a periodicity of 2π/3 in θ . This is called the RW periodicity [4,5]. The
phase diagram is alsoθ even, because so isΩ. On the dot-dashed line going up from an endpoint
(θRW,TRW) = (π/3,1.09Tc), the quark-number densityn and the phaseφ of the Polyakov loop
are discontinuous in the PNJL calculations [5]. This is called the RW phase transition. The right
panel of Fig. 2 showsθ dependence ofφ for four cases ofT/Tc = 0.97,1.01,1.04, and 1.10. The
PNJL results (curves) well reproduce the lattice data [1] (symbols). It is found that is continuous at
θ = π/3 in the low-T case ofT ≤ TRW = 1.09Tc, but it is discontinuous atθ = π/3 in the high-T
case ofT > TRW.
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In the entire region 0≤ θ ≤ 2π/3, the eight-quark interaction movesTσ
c down from the thin

dashed curve (set A) to the thick one (set B). However, the thick dashed curve still overshoots
the lattice result (symbols) with 10% error nearθ = π/3. In order to solve this problem, we
introduce the vector-type four-quark interaction,−Gv(q̄γνq)2 [5]. As mentioned in Ref. [5], the
phase structure in the real chemical potential region is quite sensitive to the strength of the coupling
Gv. It is then important to determine the strength, but it has not been done yet. Since the vector-type
interaction does not affect the physical quantities atµ = 0, we can simply add the interaction to set
B. As Gv increases from zero,Tσ

c goes down towardTΦ
c , while TΦ

c moves little. WhenGv = Gs,
the thick dashed curve (set B) goes down to the bold one (set C) and consists with the lattice result
[1]. Thus, the PNJL calculations with set C can reproduce the lattice result [1] thatTσ

c coincides
with TΦ

c within numerical errors in the entire region 0≤ θ ≤ 2π/3.
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Figure 2: Left panel; Phase diagrams of the chiral phase transition in the imaginary chemical potential
region calculated with three parameter sets are presented by dashed curves; thin, thick, and bold ones are
results of the PNJL calculations with set A, B, and C, respectively. Lattice data [1] are shown with 10error
that Tc has [41]. The deconfinement phase transition curve (bold solid curve) and the RW phase transition
lines (bold dot-dashed lines) calculated with set C are also shown for comparison.Right panel; Phase of
the Polyakov loop as a function ofθ at various temperatures. Lattice data [1] are plotted by symbols. Curves
represent results of PNJL calculations with set A.

4. Prediction of the phase diagram at real chemical potential

Figures 3(a) and 3(b) represent the phase diagrams in theµ2−T plane predicted by the PNJL
calculations with parameter sets A and C, respectively. On the solid curve between points E and D,
both the first-order chiral and deconfinement phase transitions take place simultaneously, and hence
point E is the critical endpoint of these phase transitions. The dot-dashed curve moving up from
point I represents the RW phase transition of first order, and then point I is the critical endpoint
of the RW phase transition. The dashed curve between points H and E means the crossover chiral
transition, while the long-dashed curve between points I and E does the crossover deconfinement
phase transition. Point F (G) is a crossing point between the dashed (longdashed) curve and the
µ = 0 axis. Cross symbols with error bars indicate LQCD data [1].

Figure 3 (b) is most reliable, since the PNJL result with parameter sets C is consistent with the
LQCD one [1] in theµ2 < 0 region. Comparing Figs. 3 (a) and 3 (b), one can see that the scalar-
type eight-quark interaction and the vector-type four-quark interaction give sizable effects on the
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set D E F H I

A (2.02, 0.00) (1.84, 0.72) (0.00, 1.25) (iπ/3×1.53, 1.53) (iπ/3×1.09, 1.09)

C (1.80, 0.00) (1.51, 0.72) (0.00, 1.05) (iπ/3×1.13, 1.13) (iπ/3×1.07, 1.07)

Table 2: Positions of points D-I inµ-T plane. The positions of these points are normalized as(µ/Tc,T/Tc)
with Tc = 173 MeV. Both set A and set C have the same position of point G; (0.00,1.00).

,

phase structure. In particular for the critical endpoint E, the eight-quark interaction shifts point E to
larger T and smallerµ, and the vector-type interaction moves it in the opposite direction. Positions
of points D-I are summarized in Table 2. The critical endpoint does not disappear in virtue of the
eight-quark interaction, even if the vector-type interaction is taken into account.
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Figure 3: Phase diagram in the real and imaginary chemical potential region. Panels (a) and (b) are calcu-
lated with the parameter sets A and C, respectively. Cross symbols with error bars indicate the lattice data
taken from Ref. [1]. Points D-I are explained in the text.
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