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1. Introductory comments about canonical determinants

Canonical fermion determinants ¢@}{9, which describe a fixed numbgof quarks, are con-
ceptionally interesting objects. On the lattice they mapbined from the usual grand canonical
determinant déD ()] as a Fourier transform with respect to imaginary chemictémal u:

de(D]@ = - [ dge " detD( = 9/P)] . (L.1)

Heref3 is the inverse temperature which is given by the (periodin)foral extent of the latticeh
is the angle that parameterizes the imaginary chemicahpatg: = i¢ /3. The individual canon-
ical determinants dfd](@ appear as coefficients in the fugacity expansion of the gcandnical
determinant déD ()],

defD(p)] = 5 €% detD]@. (1.2)

q

Thus the representation with the canonical determinarggjusvalent to the grand canonical for-
mulation. In recent years several numerical simulatiorthéncanonical formalism may be found
in the literature [1] — [4], and were reviewed at this confexe [5].

Canonical determinants do not only provide an alternaip@@ach to lattice simulations with
finite density, but also have interesting physical properfb]. The grand canonical determinant
defD(u)] is a gauge invariant object and thus is a sum of products aedlidoops which are
dressed with link variables. The chemical potential is eg@ent to a temporal fermionic boundary
condition exgi¢). This phase at the boundary is seen by the loops that winchdrine compact
time direction according to their total winding number arideg rise to a phase factor exgpk)
for a loop that windk-times. The Fourier integral (1.1) over this boundary ctiadiprojects the
grand canonical determinant to only those loops which havet avinding number ok = g (see,
e.g., [7] for a more detailed discussion of these relatiom$e fugacity expansion (1.2) thus may
also be viewed as an expansion in terms of winding numbeizsopfsl

In a similar way all gauge invariant objects may be decomghdste sectors of loops with
fixed winding number. This has been discussed for the chinatiensate, where it is hoped that
the "dual chiral condensate", defined as the sector of thralatondensate with winding 1, might
help to understand a possible relation between chiral syrgmestoration and deconfinement [8]
- [10].

2. Center symmetry

The canonical determinants have simple transformatiopegsti@s under center transforma-
tions, where all temporal gauge linkk(X,tp) at a fixed time argumeriy are multiplied with an
elementz of the center of the gauge group, i/84(X,to) — zUs(X,tg). For the case of gauge group
SU(3) thezare the phases= 1, exp(+i2711/3). The gauge action and the gauge measure are invari-
ant under center transformations. Consequently the exjp@etfunctional(..)s for the evaluation
of observables in pure gauge theory is invariant under cératesformations — as long as the cen-
ter symmetry is not broken spontaneously. However, suctoatapeous breaking of the center
symmetry takes place at high temperatures [11].
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Figure1: Scatter plots of Polyakov loop values in the complex plaméde (lhs.) and high temperature.

Observables may be classified with respect to their symnpebperties under center trans-
formations. A simple example is the Polyakov loBpvhich is the trace over a temporal gauge
transporter that winds in a straight line once around com@e. As it winds once, it sees ex-
actly one of the link variableB4(X,tp) which are transformed with the center eleme@ind we
conclude thaP transforms a® — zP. Since it transforms non-trivially, the Polyakov may bedise
as an order parameter for the breaking of center symmetripwBthe critical temperaturd; its
expectation value vanishes, while abdyehis expectation value is finite.

The behavior of the Polyakov loop is illustrated in Fig. 1 whae show scatter plots of the
Polyakov loop in the complex plane. The data are from 500 cjueth gauge configurations on
82 x 4 lattices generated with the Liischer-Weisz gauge actidh e show two ensembles with
temperatures of /T, = 0.7 (Ihs. plot) andT /T, = 1.43 (rhs.) according to the scale setting [13]
with the Sommer parameter. Obviously for low temperatunesvalues oP are compatible with
zero, while they are non-vanishing aboke where the center symmetry is broken. We note that a
true spontaneous breaking can happen only at infinite $patiame. In that case the system will
spontaneously select one of the three "islands" in the cexnplane and only populate this one
island.

Similar to the Polyakov loop we also may obtain the transtdiom properties of our canonical
determinants déD](@. We have already observed that they consist of loops witht avireling
number ofg around compact time. Thus they have a net numberasbssings of the time slicg
where the center transformation acts and consequentlgfotan as

defD]@ — 29 defD]@ = ZMO® yeqp)@ (2.1)

where in the last step we have used that1, exp(£i2m/3).

The canonical partition sun&® for a fixed quark numbeq are obtained as the expectation
values of the canonical determinants using the pure gawgetlexpectation functiondl.)g. As
long as the center symmetry is unbroken, we find

7@ — (defD] @) Y A(defD) ) — Zz@ =0 for gmod3£0.  (2.2)

Thus in the low temperature phase, where the center symisatnproken, the canonical partition
sumsZ(9 are non-vanishing only for quark sectors with vanishinalits, i.e., wherg is a multiple
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Figure2: Scatter plots of the canonical determinant$@gt), g = 0, 1, 2 (left to right) in the complex plane.
The top row is fofT /T = 0.70, the bottom foil /T, = 1.43.

of 3. The fact that the center symmetry is unbroken is crdoiathe argument in (2.2), and we
marked the step where we use that property by "c.u. !" for tareanbroken". We remark that
the transformation properties (2.1) may be combined withddnter properties of observables to
derive selection rules for observables in the center symiertase [3], [7]. One finds that the total
triality of an observable multiplied with a canonical detémant has to vanish for a non-vanishing
contribution in the center symmetric phase.

The situation is different in the deconfined high temperfoinase where center symmetry
is broken spontaneously. The argument used in (2.2) mayngetobe applied, and@ can be
non-vanishing also fag mod 3+ 0. In other words, abovE. also canonical determinants {2f%
with non-vanishing triality can have a non-vanishing exatien value.

In Fig. 2 we study the behavior of the canonical determindat®]@ below (top row of plots)
and abovd, (bottom) for quark numberg= 0, 1, 2 (plots from left to right). We show scatter plots
of the values of the canonical determinants in the complarel The canonical determinants were
evaluated as described in [7], using a dimensional redudtiamula for determinants [14]. The
lattice volume is 8 x 4, the bare quark mass parameter in the fermion determinastitom =
100 MeV, and the statistics is 500 configurations Tog T (top row) and 800 configurations for
T > T (bottom).

For the zero triality casg = 0 (left column of plots) the values of dBX(©) fall on the positive
half of the real axis and thus give rise to a positive expentatalueZ(® both below and above
Tc. For the non-vanishing triality sectors with= 1,2 (center and rhs. plots) the properties below
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and abovel, are drastically different. BeloW, the values of déD](@,q= 1,2, scatter around the
origin in an isotropical distribution. Abov&. the distribution is rather different and we observe the
center symmetry pattern familiar from the Polyakov looplasan in Fig. 1. We stress that for the
canonical determinants the pattern is even much cleanerfthahe Polyakov loop (Both, Fig. 1
and Fig. 2 were made with the sam&84 ensembles.).

Let us at this point address again the role of the infinite mauwhich is necessary for a
spontaneous breaking of the center symmetry. The high texrtyse data in Figs. 1 and 2 show
the star-like pattern characteristic for the center brgiesse. However, all three center sectors are
populated equally and a naive averaging over all pointsérstiatter plots would give a vanishing
expectation value for the Polyakov lo8p as well as the canonical determinantsBiE#), q = 1,2
at all temperatures — a truly uninteresting outcome. Toiolitee physically relevant result one
must take into account that in the limit of infinite spatialuwme, the system selects spontaneously
only one of the three sectors, with the other two remainingtgnin a simulation on a finite lattice
this may be taken into account by considering ab@vthe absolute values of symmetry breaking
observables, i.e(|P|)c and(|defD](¥|)g.

3. Distribution of the quark sectors

Let us now study in more detail how the canonical determibahave in the high temperature
phase. In particular how sectors with different quark nuretiehave relative to each other. As
already discussed in the last section, abdyewhere the center symmetry is broken, also the
sectors withg mod 3+ 0 can have non-vanishing expectation values. As also asktid¢kere, one
has to average the absolute value of the determinants, @a$oone is on a finite volume where the
center symmetry cannot be broken and all three center seaterpopulated equally (if a proper
Monte Carlo update is used).

In Fig. 3 we show the distributiofi defD]@ |)s/(defD](©)¢ as a function ofj, i.e., we nor-
malize with respect to the trivial sector with= 0. The data are for lattice siz€ & 4, a quark
mass ofm = 100 MeV, and a statistics of 100 configurations. We show tkealt® for different
temperatures, ranging from= 0.70T. to T = 1.43T,

Below T; the distribution of the absolute value of the canonical uheiteants shows a Gaussian
type of behavior with a rather narrow width. This width isfieasing with temperature. Abovg
the distribution remains Gaussian, but the width does revhde grow any longer with temperature.
We remark, however, at this point, that we work with a lattizee fixed in lattice units (%x 4),
and change the temperature by varying the gauge couplings ifiereasing the temperature also
shrinks the spatial volume. This effect could mask a furthielening of the distribution aboveg,,
but even if such widening persists, it is much smaller thandfiect seen below.. A detailed
finite volume analysis of the quark distribution must be feftfuture studies.

We conclude with discussing an important consistency ch@ukce the canonical determi-
nants are known, one can try to sum up the fugacity expangdi@) &nd compare this sum to the
grand canonical fermion determinant. The plots in Fig. 3nskiwat the canonical determinants
quickly approach zero dg| increases, and a truncation of the fugacity expansion sgestified.
We implemented such a test and summed the fugacity expartgimnally taking into account
terms with|g| up to values of 30-50. For moderate chemical potential obuggt~ 0.1 we found
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Figure 3: The distribution of{|defD](¥|)g/(defD](©) as a function of the quark numberfor different
values of the temperature.

excellent agreement between the fugacity sum and the gramohizal result, showing that the
determination of the lowest canonical determinants isaefitly accurate. For larger values of the
chemical potential higher terms start to contribute whighuld have to be evaluated with higher
accuracy.
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