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1. Introduction

Quantum Chromodynamics(QCD) is believed to be the fundamental theory of strong inter-
action. At finite temperature, QCD is usually described by two extreme pictures. One is with the
weakly interacting meson gas in the low temperature regime and another is with perturbative Quark
Gluon Plasma (QGP) in the high temperature regime. Lattice studies of QCD Equation of State
(EOS) studies]] indicate that the Steven-Boltzman ideal gas limit can be reached only afhigh
and deconfined partons might be strongly interacting in the intermediate temperature range above
Tc. This point is supported both by RHIC experiments and theoretically studies. On the one hand,
the QGP observed by RHIC can be well described by the hydrodynamical i2lod2f the other
hand, the lattice studies of meson correlators show that charmonia and light hadrons can survive in
a temperature range beyomd[3, 4, 5].

Since glueballs are predicted by QCD and well defined in pure Yang-Mills theory, Their
evolution is also a good probe to investigate the property of QCD matter in the deconfinement
phase. In this work, we carry out a numerical lattice study on anisotropic lattices with much
finer lattice in the temporal direction than in spatial ones. By varying the temporal extension of
the lattice, we obtain a wide temperature range fi@B8i; to 1.9T.. At each temperature, we
take into account all the twentg”® channels, withPC = ++,+—, —+, —— the various parity-
charge conjugate ariRl= A1, Ao, E, T1, T> the irreducible representations of lattice symmetry group.

For eachRPC, as in the zero temperature caég, 8], we implement smearing schemes and the
variational method to acquire an optimal glueball operator which couples most to the ground state.
In the data analysis stage, the correlators of these optimized operators are analyzed through two
approaches. First, the thermal masiglesof glueballs are extracted in all the channels and all over

the temperature range by fitting the correlators with a single-cosh function form, as is done in the
standard hadron mass measurements. Thu§-eolution of the thermal glueball spectrums are
obtained. Secondly, with the respect that the finite temperature effects may result in mass shifts and
thermal widths of glueballs, we also analyze the correlatoAsin, A; ¥, E**, andT, " channels

with the Breit-Wigner ansatz which assumes these glueballs thermal widths, say, chignigés

wy — il in the spectral function (see below). It is expected that the temperature dependemce of
andl” can shed some light on the scenario of the QCD transition.

2. Numerical details

We adopt the tadpole improved Symanzikafs action, which has been extensively used in the
study of glueballs,
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wheref is related to the bare QCD coupling constant: as/a; is the aspect ratio for anisotropy
(we takeé =5 in this work), us and u; are the tadpole improvement parameters of spatial and
temporal gauge links, respectively. Lattices 248 x N, with 8 = 3.2, andas = 0.087&m, and the
spatial volume/ ~ (2.1fm)3,
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The deconfinement critical point is roughly determined by the susceptilyiityf Polyakov
loops,
Xp = (0% —(0) (22)

where® denotes th&(3) rotated Polyakov line,

RePexp—2mi/3]; argP € [11/3, 1)
O = (¢ ReP; argP € [—m/3,m/3) . (2.3)
RePexp2mi/3]; argP € [—m, —1/3)

As illustrated in Fig.1, the peak position is roughly & = 38, which corresponds to the
critical temperaturd.. With the lattice spacings = 0.087&m, T; is estimated to b&. = 296MeV.
Based on this, we vary; to obtain a temperature range fr@m- 0.3T. to 1.9T, as listed in Tabld.

oota | T T T Ny
0.012 |
0.01 |
0.008 |
0.006 |
0.004 | . ;
0002 4+ + + +

0+ + +

20 25 30 35 40 45 50 55 60
N¢=1/(Tay)

Figure 1: xp is plotted versudk at 8 = 3.2. There is a peak gfp nearN; = 40.

For all the 20JPC channels of glueballs, we take the following two steps to construct the
optimal glueball operators which couple most to the ground states (More details can be found in
Ref. [9] and Ref. 7, 8]). First, for a given gauge configuration, we generate six differently smeared
copies, on each of which, four realizations of ed€h are established based on all the different
spatially oriented Wilson loops of a set of loop prototypéls [As a result, we obtain a set of 24
different glueball operatorgy = {@,,a = 1,2,...,24}, for eachJ™C. At the second step, we carry
out the variational method on each operator@éd determine the specific combinational coeffi-
cients{vg,a = 1,2,...,24} relevant to the ground state, such that the desired optimal operator is
obtained asb = vy . Practically at each temperature, after a thermalization of 10000 heatbath
sweeps, the glueball operators are measured every three compound sweeps, each of which is com-
posed of one heatbath and five micro-canonical over-relaxation(OR) sweeps. In the data analysis,
the measurements are divided iMNg, bins of the sizeny,, = 400. Parameterdlyin, andny, at
various temperature are also listed in Tethle

3. Glueballs at finite temperature

Theoretically, under the periodic boundary condition in the temporal direction, the temporal
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Ne | T/Te | Nmb | Noin || Ne | T/Tc | Nmp | Noin

128 | 0.30 | 400| 24 || 36| 1.05| 400 | 40
80 | 0.47|400| 30 || 32| 1.19 | 400| 56
60 | 0.63| 400 | 44 || 28| 1.36 | 400| 40
48 | 0.79 | 400 | 40 || 24| 1.58 | 400 | 40
44 | 0.86 | 400| 44 || 20| 1.90 | 400 40
40 | 0.95 | 400 | 40 - - - -

Table 1: Temperature range and simulation parameters in this work.

correlator<C(t, T) at the temperatur€ can be written in the spectral representation as

CtT) = ——Tr (e*H/TcD(t)qa(O))

Z(T)
_ < [njejm)? _ Em+En 1 B
— n; 22(T) exp 5T x cosh| [t >T (En—Em)
— [ dop(@)K(@.T), (3.1)
with a T-dependent kernéd (w, T) = % and the spectral function,
n|®|m)|?
p(e) = 3 BP0/t (56— (E, — En) — 5(62— (En—En)), (3.2)
én 2Z(T)

whereZ(T) is the partition function at , andE, the energy of the thermal stat@ (|0) represents
the vacuum state). In the zero-temperature limit¢ 0), due to the factoexp(—En/T), the spectral
functionp(w) degenerates to
_ ¢ [0 ?
p(@) =Y g (B(0—En)—8(w+En)), (33)

n

thus we have the function form of the correlation functi@ft, T = 0) = ZWnerEnt with W, =
n

|(0|@|n)|?/Z(0). However, for any finite temperature (this is always the case for finite lattices), all
the thermal states with the non-zero matrix elemémisP|n) may contribute to the spectral func-

tion p(w). Intuitively in the confinement phase, the fundamental degrees of freedom are hadron-
like modes, thus the thermal states should be multi-hadron states. If they interact weakly with each
other, we can treat them as free particles at the lowest order approximation and cBpsidehe

sum of the energies of hadrons including in the thermal $tateSince the contribution of a ther-

mal statgm) to the spectral function is weighted by the factap(—En,/T), apart from the vacuum

state, the maximal value of this factordgp(—Mmin/T) with Mmin the mass of the lightest hadron
mode in the system. As far as the quenched glueball system is concerned, the lightest glueball
is the scalar, whose mass at the low temperature is roudhly ~ 1.6 GeV, which gives a very

tiny weight factorexp(—Mg++ /T¢) ~ 0.003 at T; in comparison with unity factor of the vacuum
state. That is to say, for the quenched glueballs, up to the critical tempefattine contribution
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of higher spectral components beyond the vacuum to the spectral function are much smaller than
the statistical errors (the relative statistical errors of the thermal glueball correlators are always a
few percents) and can be neglected. As a result, the function foptwefin Eq.3.3can be a good
approximation for the spectral function of glueballs at least up téccordingly, considering the

finite extension of the lattice in the temporal direction, the function form of the thermal correlators

can be approximated as
coshMn(1/(2T) —t))

sinh(Mp/(2T)) ~
which is surely the commonly used function form for the study of hadron masses at low tempera-
tures on the lattice. As is always done, the glueball malskederived by this function are called

the pole masses in this work.

(3.4)

Ct.T) =3 W,

3.1 The single-cosh fit

After the thermal correlatorS(t, T) are obtained, the pole masses of the ground state (or the
lowest spectral component) can be extracted straightforwardly. ForRf&othannel and at each
temperaturd , we first calculate the effective malgk(t) as a function of by solving the equation

C(t+1,T) _ cosh{(t+1—N/2)aMen(t)) (3.5)

Ct,T) cosh((t — Ni/2)aMe(t))

and determine the time windofty, to] whereMeg(t) has a plateau. In this time windo®(t, T) is
fitted through a single-cosh function form. FRjillustrates this procedure &+ channel.
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Figure 2: Effective masses at different temperature&in™ channel. Data points are the effective masses
with jackknife error bars. The vertical lines indicate the time windtwt,] over which the single-cosh
fittings are carried out, while the horizonal lines illustrate the best fit result of pole masses (in each panel the
double horizonal lines represent the error band estimated by jackknife analysis)

In this work, the pole masses in all the REC channels are extracted at all the temperatures.
The common feature of temperature dependence of pole masses is thatThealmvpole masses
keep stable when varying the temperature, while aigythe pole masses decrease gradually and
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Figure 3: TheT-dependence of pole masses", A" E**, andT,'* glueballs.

cannot be extracted beyond the temperaiure 1.6T.. Fig.3 illustrates these hebaviors Arj*,
A", E*T, andT, " channels. These results are different from the observation of a previous lattice
study on glueballs where the observed pole-mass reduction start éven @BT, [10].

3.2 Breit-Wigner analysis (BW)

Theoretically in the deconfined phase, gluons can be liberated from hadrons. However, the
study of the equation of state shows that the state of the matter right abvt&ar from a pertur-
bative gluon gas. In other words, the gluons in the intermediate temperatureRboag interact
strongly with each other and glueball-like resonances can be possibly formed. Thus different from
bound states at low temperature, thermal glueballs can acquire thermal width due to the thermal
scattering between strongly interacting gluons and the magnitudes of the thermal widths can signal
the strength of these type of interaction at different temperature.

By assuming glueballs thermal widths, we also adopt the Breit-Wigner aid€ito [analyze
the thermal correlators once more. First, we treat thermal glueballs as resonance objects which
correspond to the poles (denoteddy= wy —ilN) of the retarded and advanced Green functions in
the complexw—plane. wy is called the mass of the resonance glueball aritd thermal width in
this work. Secondly, we assume that the spectral fungti@n) is dominated by these resonance
glueballs. With these respects, the thermal correlators can be parameter@gtiChs [

_ cosh(ap +iM) (5 —t))
or(t) = A Re( g )
S 1
+ 20T nZlcos(ernT'[) { T+ T2+ (n— —n)}] . (3.6)

In the data analysis, the effective mas§(t) and effective width™®f(t) are obtained first by
solving the equation array,

C(t,T)/C(t+1,T)
Ct+1,T)/Ct+2,T), (3.7)

or(t)/or(t+1)
or(t+1)/or(t+2)

D
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Figure 4: Determinations of the fit rangi,to] in T,7" channel af\; = 128, 36, and 20. In each row,
wéeﬁ) (t) andr ¢ (t) are plotted by data points with jackknife error bafts,t,] are chosen to include the

time slices between the two vertical lines, whmésﬂ) (t) andr €™ (t) show up plateaus simultaneously. The
best fit results ofw andl” through the functiomyr (t) are illustrated by the horizonal lines.

whereC(t, T) is the measured correlator, then the simultaneous plateau regiog(tofandr (t)
gives the fit windowjts, to] where the fit is carried out. This procedureTifi* channel is shown in
Fig. 4 for instance.

The main feature of the best fity andl™ in A] A " E**, and T, channels is illustrated
in Figure5: First, ayp's are insensitive td, or more specifically, the reduction af, at the highest
temperaturd = 1.90T; are less thaB%. Secondly["’s are small and do not vary much beldw
but increase abruptly when the temperature pagsasd reach to values wy/2 at T = 1.90T.
These features can be easily seen in Bjgvhere the behaviors afy andl™ with respect to the
temperaturd are plotted for all the four channels.
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Figure 5: ay's andl™’s are plotted versu$ /Tc for A{ ", A" E*™, andT,'* channels. The vertical lines
indicate the critical temperature.

4. Summary and conclusion

In the pure SU(3) gauge theory, the thermal correlators in all the 20 symmetry channels are
calculated on anisotropic lattices in the temperature range frorm:a@1.9T.. Both the single-
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cosh fit and BW analysis show that glueballs can survive up {6, 1.Qur results are consistent

with that of the studies of EOS and charmonig, 4,12, [13]. In BW analysis, glueball masses

keep stable when the temperature increasing, and the thermal widths of glueballs becomes larger
and larger abové;. It seems that in the intermediate T range, the state of matter are dominated by
strongly interacting gluons. Gluons interact with each other strongly enough to form glueball-like
resonances, in the mean time, glueballs can also decay into gluons. At a given temperature, these
two procedure reach the thermal equilibrium. The thermal widths signal the interaction strength.

This work is supported in part by NSFC (Grant No. 10575107, 10675005, 10675101, 10721063,
and 10835002) and CAS (Grant No. KICX3-SYW-N2 and KJCX2-YW-N29). The numerical cal-
culations were performed on DeepComp 6800 supercomputer of the Supercomputing Center of
Chinese Academy of Sciences, Dawning 4000A supercomputer of Shanghai Supercomputing Cen+
ter, and NKstar2 Supercomputer of Nankai University.
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