
P
o
S
(
L
A
T
2
0
0
9
)
1
8
9

Phase diagram of a chiral random matrix model with
2+1 flavors

H. Fujii∗†

Institute of Physics, University of Tokyo, Tokyo 153-8902, Japan
E-mail: hfujii@phys.c.u-tokyo.ac.jp

T. Sano
Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
Institute of Physics, University of Tokyo, Tokyo 153-8902, Japan
E-mail: tsano@nt1.c.u-tokyo.ac.jp

We recently proposed a chiral random matrix model incorporating the UA(1) breaking determi-
nant term that brings about a flavor-number dependence of the chiral phase transition. We apply
this model here for study of the phase diagram with degenerate up, down quark mass mud and
the strange quark mass ms at finite temperature and quark chemical potential. With zero chemical
potential the model shows a first-order phase transition at finite temperature for smaller quark
masses than a critical curve in the mud-ms plane, and this first-order region is enlarged in the mud-
ms plane when the chemical potential becomes nonzero, which is in accord with the expectation
for the QCD critical point in the QCD phase diagram.
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1. Introduction

The chiral random matrix (ChRM) model [1] is defined with the fermion determinant in zero
space-time dimension and may be regarded as a schematic model for study of the QCD thermody-
namics. It was applied extensively in Ref. [2] to explore its phase diagram at finite temperature T
and quark chemical potential µ , which revealed the phase structure with a tri-critical point (TCP) on
the chiral phase boundary in the T -µ plane in the chiral limit, in accord with the structure obtained
in other models for QCD [3]. In reality, the nonzero quark mass mud smears out the second-order
boundary line and the TCP turns to be a simple critical point appearing at the end of the first-order
line [4, 5]. This QCD critical point (QCD-CP) has attracted much attention from the viewpoint of
the possible experimental confirmation as a critical evidence for the QCD phase transition [3, 6].

The phase structure is sensitive to the value of the strange quark mass ms. For ms less than a
certain critical value with the vanishing up-down quark mass mud = 0, the chiral transition at finite
T and at zero µ is expected to be of the first order [7]. In this case, there would be no TCP in the
T -µ plane, provided that the finite µ makes the transition stronger. This qualitative feature should
be retained even in the mean-field models. On the contrary, however, the ChRM model used in
Ref. [2] has no flavor-number dependence in its phase structure, and it is favorably interpreted as
a model with two flavors since it predicts a second-order transition at finite temperature and with
zero chemical potential.

We recently proposed a ChRM model which incorporates the UA(1) breaking determinant term
by considering a distribution for the number of the zero modes [8]. Owing to this term, the finite-
temperature transition of the model becomes of the first order for three massless flavors whereas
it remains of the second order for two flavors. In this paper, we explore the phase diagram of the
ChRM model which has the flavor number dependence through the UA(1) breaking determinant
term [8, 9]. This is the first study of the phase diagram in the space of T , µ , mud and ms in the
ChRM model.

2. A random matrix model with the determinant interaction

Dynamical breaking of chiral symmetry in the quark system may be signaled by the non-
vanishing density of the Dirac eigenvalues at the origin ρ(0) 6= 0, through the Banks-Casher relation
〈q̄q〉 ∝ ρ(0)/V with V being the space-time volume. These low-lying eigenvalues are thought to
originate from the localized instantons and other non-perturbative gauge field effects. In the ChRM
model, focusing on the properties ρ(λ ) at small λ , we restrict the Dirac operator into the space of
the small-eigenvalue modes. We may divide intuitively these quasi-zero modes into two categories:
N+ +N− topological zero modes associated to N+ instantons and N− anti-instantons, and 2N near-
zero modes stemming from other dynamical effects [10, 8]. The numbers of these modes, N+, N−

and 2N, are considered to be proportional to the space-time volume V . Then the Dirac operator of
the model takes the form

D =

(

0 iR+C
iR† +CT 0

)

, (2.1)

where the block structure is required by chiral symmetry. The complex matrix R ∈C(N+N+)×(N+N−)

is treated as random variable reflecting the non-perturbative gauge field dynamics. The matrix C
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represents the effects of finite temperature T and chemical potential µ , and is chosen to be in a
simple form [2]

C =







(µ + iT )1N/2 0 0
0 (µ − iT )1N/2 0
0 0 0






. (2.2)

The temperature T appears as a deterministic part to D, while µ breaks its anti-hermiticity leaving
D invariant under µ ↔−µ . Note that the topological zero mode sector of C, i.e., N+×N− bottom-
right block, is set to zero without any effect of T or µ . This may be interpreted as the fact that the
localized instanton zero mode is insensitive to the boundary condition set by the temperature and
the chemical potential in the Matsubara formalism. The partition function of the Gaussian ChRM
model for fixed N+ and N− is defined with this Dirac operator as:

ZN+, N− =
∫

dR e−NΣ2trRR†
N f

∏
f=1

det(D+m f ). (2.3)

Note that the partition function for N+ = N− = 0 reduces to the one used in [2].
Within a finite space-time volume, the numbers of the instantons and anti-instantons are fluc-

tuating, and accordingly one should sum up the partition function ZN+, N− over (N+,N−) with a
certain distribution,

ZRM = ∑
N+, N−

P(N+)P(N−)ZN+, N− , (2.4)

where we have assumed independent distributions P(N±) for N±. Consequently, the total number
of the quasi-zero modes, 2N + N+ + N−, becomes a varying quantity. For P(N±) the Poisson
distribution seems reasonable at a glance, but it leads to an unbound effectivel potential. In order
to avoid this difficulty we use the binomial distribution instead [8]:

P(N±) =

(

γN
N±

)

pN±(1− p)γN−N± , (2.5)

where γN is the maximum value of N± with γ being O(1), and the p may be interpreted as the
probability for one topological zero mode to appear.

After the bosonization with introducting an auxiliary variable S f g ∼ q† f
R qg

L, which yields the
order parameter martix, we find the complete partition function as

ZRM(M ,T,µ) =
∫

dS e−2NΩ(S; M , T, µ) (2.6)

with

Ω = 1
2 Σ2trS†S− 1

4 lndet
[

(S +M )(S† +M
†)− (µ + iT )2][(S +M )(S† +M

†)− (µ − iT )2]

− 1
2 γ
[

ln(α det(S +M )+1)+ ln(α det(S† +M
†)+1)

]

, (2.7)

where M is the mass matrix in the flavor space. This is the ChRM model with the UA(1) breaking
determinant interaction.
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Figure 1: The secon-order phase transition lines on mud-ms plane for several values of α with γ = 1 (left)
and for several values of γ with α = 0.5 (right). The TCP for each parameter is denoted by a dot.

Fluctuation properties of this model at finite temperatures for the cases with two and three
equal-mass flavors are reported in Ref. [8]. In this paper, we examine the phase structure in the
2+1 flavor case M = diag(mud,mud,ms). Choosing S = diag(φud, φud, φs) we fix the ground state
by the saddle point equations for φud and φs,

∂Ω
∂φud

= 0,
∂Ω
∂φs

= 0 , (2.8)

which becomes exact in the thermodynamic limit N → ∞. We set Σ = 1 since Σ can be absorbed in
S by redefinition of other parameters, and leave α and γ as free prameters.

3. The phase diagram

3.1 Finite temperature T 6= 0 and zero chemical potential µ = 0

It is generally expected that the chiral phase transition at finite temperature is the second order
for N f = 2 massless quarks with UA(1) breaking, while it becomes the first order for N f = 3 mass-
less quarks. This means that the order of the chiral phase transition (mud = 0) for N f = 2 changes
when we vary ms as an additional external field. The point where the order of the transition changes
is called the tri-critical (TCP) point.

Now that we have the first ChRM model which incorporates the determinant interaction term,
we are ready to examine the effect of the quark masses on the chiral transition of this model in mud–
ms plane. In the left panel of Fig. 1, we draw in the mud–ms plane the critical lines below (above)
which the finite temperature transition is the first order (cross-over), for α = 0.3, 0.4 and 0.5 with
γ = 1.0. On the critical lines the system shows a second-order transition at a finite temperature.
These lines approach the ms axis as mTCP

s −ms ∝ m2/5
ud → 0, as expected from the Landau-Ginzburg

analysis. The endpoints mTCP
s are denoted with dots in Fig. 1. As we increse the weight α =

p/(1− p) of the topological zero mode, the first-order region is enlarged in mud–ms plane. As
shown in the right panel of Fig. 1, the increase of the maximum number of the topological zero
modes, γN, also results in a wider first-order region.
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Figure 2: Critical surface in the mud-ms-µ2 space with parameters γ = 1 and α = 0.5. The bold line denotes
the line of TCP.

3.2 Finite temperature T 6= 0 and finite chemical potential µ 6= 0

Next we explore the phase structure of the model at finite chemical potential µ 6= 0. In the
earlier work of [2] using the model with no determinant term, it is found that the finite chemical
potential µ makes the transition stronger, which generates the TCP in the T -µ plane in the chiral
limit. Similar behavior is observed in the model with the determinant interaction. In Fig. 2, we plot
a series of critical lines for several values of µ , which as a whole spans a surface in the mud-ms-µ2

space. The region of the first order transition becomes enlarged with increasing µ 2. In the ms-µ2

plane, we obtain a line of TCP. This behavior is in accord with the standard scenario [3, 2, 11]
suggesting the existence of the QCD-CP, provided that the transition is cross-over at T 6= 0 and
µ = 0. We have checked by changing the values of α and γ that this qualitative behavior is robust.
The model parameters may depend on µ in general and it is possible to make the surface back-bend
by varying α and/or γ as functions of µ , although their µ-dependences are unknown within this
model.

4. Summary

We have presented the first result on the phase diagram of the ChRM model in the space of
mud-ms-µ . This is made possible with the ChRM model with the UA(1) breaking term. We have
found taht the region of the first-order phase transition in the mud-ms plane increases with increasing
anomaly parameters α and/or γ at µ = 0. The nonzero quark chemical potential µ 6= 0 makes the
chiral phase transition stronger and the first-order transtion region is enlarged. This structure of the
phase diagram in the space of mud-ms-µ is robust in a wide range of the model parameters α and γ ,
and is in accord with the standard scenario for the QCD critical point. If one allows the parameters
α or γ to be µ-dependent, it is possible to make the critical surface back-bend [12, 13].
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