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1. Introduction

The investigation the phase diagram of QCD in the tempearathemical potential plane has
a deep relevance and implications on cosmology, astrogghgsid in the phenomenology of heavy
ions collisions. The lattice formulation of QCD is the onbot to approach this important issue
starting from first principles. Unfortunately the study ofQ at non-zero baryonic density by nu-
merical simulations on a space-time lattice is plagued byitéll-known sign problem: the fermion
determinant is complex and the Monte Carlo sampling becamfesasible. One of the possibilities
to circumvent this problem is to perform Monte Carlo numargimulations for imaginary values
of the baryonic chemical potential, where the fermion dateant is real and the sign problem is
absent, and to infer the behavior at real chemical potebyianalytic continuation. The method
of analytic continuation [1—16] is well-founded and worksgfiwithin the limitations posed by the
presence of non-analyticities and by the periodicity ofttieory with imaginary chemical poten-
tial [17].

It is very important to answer the question about which isagpmal way to extract infor-
mation from data taken at imaginary values of the chemic&rg@l. This is equivalent to an-
swer which is the best interpolating function for data atgmary chemical potential that could
analytically continued in order to get physical predictidior real values oft. The aim of our
investigations in the past two years has been to to studydiions and possible improvements of
the method of analytic continuation [9, 18, 19]. In ordertiady this problem we have considered
SU(2) (two-color QCD) and SU(3) at finite isospin. Indeedsththeories are free of the sign prob-
lem and Monte Carlo numerical simulations at real valueh®themical potential or at real values
of isospin potential are feasible. Therefore it is possibleompare the analytic continuations with
the data from direct simulations allowing at the same timdisariminate between interpolating
functions an to test the range of the reliability of the atialgontinuation. Here we briefly review
results obtained in studying analytic continuation of pbgisobservables and of the critical line in
two-color QCD. Results obtained for SU(3) at finite isospis bheen reviewed in ref. [20].

2. Analytic continuation of physical observables

As already shown long ago [17], the partition function of &(N) gauge theory with non-
zero temperature and imaginary chemical potentiak iy, is periodic in@ = /T with period
2m/N and that the free enerdy is a regular function 0 for T < Tg, while it is discontinuous at
6 =2mn(k+1/2)/N, k=0,1,2,..., for T > Tg, whereTg is a characteristic temperature, depending
on the theory.

We have considered SU(2) in presencenpf= 8 degenerate staggered fermions of mass
am= 0.07. Figure 1 shows the the tentative phase diagram irn(fhg3) plane for this theory
(in correspondence of a fermion masa= 0.07) with g ~ 1.55 [21, 22] and3; ~ 1.41 [23]. We
have performed numerical simulations on & & lattice using the exaap algorithm [21] with
dt = 0.01 (typical statistics: 20k trajectories). We have perfedna careful test of the analytic
continuation of physical observables. A detailed disarssif the results obtained is reported in
ref. [9]. In order to show the importance of a careful choi€¢he interpolating function of the
imaginary chemical potential data, in figure 2 we displaytssfor two different observables in
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Figure 1: Phase diagram in thg8, [ )-plane;N is the number of colorsy; the extension of the lattice in the
temporal direction. The numerical values féar and 3. are valid for SU(2) in presence of = 8 degenerate
staggered fermions with maasm= 0.07

correspondence of two different valueghfWe have shown that the use of ratio of polynomials as
interpolating function can lead to a dramatic improvemarthie analytic continuation of physical
observables.

The aim of our subsequent investigations has been to uaderst a careful choice of the
interpolating function can also improve the continuatidéthe critical line.
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Figure 2: (Left) Negative side of the horizontal axis: imaginary pafrthe fermion number densits. the
imaginary chemical potential @ = 1.45. Positive side of the horizontal axis: real part of therfien num-
ber densitys. the real chemical potential 8t= 1.45. The green (blue) solid lines represent the polynomial
(ratio of polynomials) interpolating function; the dasHats give the corresponding uncertainty, coming
from the errors in the parameters of the fit. (Right) Chirai@ensaters. u? at 8 = 1.90. The green (blue)
solid lines represent the polynomial (ratio of polynomjidtderpolating function; the dashed lines give the
corresponding uncertainty, coming from the errors in theupeeters of the fit.

3. Analytic continuation of the critical line

The determination of the critical line in thi&, 1) plane is of overwhelming importance for the
study of strong interactions at finite temperature and badensity. The analytic continuation of
the (pseudo-)critical line on the temperature-chemicstpiial plane is well-justified, but a careful
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Figure 3: Chiral susceptibility atau)? = —0.1225 vs. 3. Full red line is the Lorentzian fit. Dashed blue
line is the multihistogram reweighting within its bootgirarror (blue strip).

test in two-color QCD and three-color QCD with finite isospimemical potential has cast some
doubts on its reliability [18 — 20].

(ap)? (@y) x2?/dof. (L) x?/d.of. (P)y  x2?/d.of.
0.1225 1.5440(16) 1.34  15349(43) 0.85  1.5418(24) 0.93
0.09 1.5068(15) 0.65 1.5019(29) 025  1.5046(21)  1.06
0.0625 1.4775(29) 0.88  1.4665(32) 0.31  1.4755(37)  0.65
-0.04 1.4532(16) 050  1.4453(36) 0.76  1.4522(26) 1.21
-0.0225 1.4324(22) 120  1.4240(28)  0.80  1.4300(39)  0.80
-0.01  1.4197(16) 1.86 1.4104(33) 0.43 1.4199(26) 1.45
0. 1.4102(18) 0.07 1.3989(61) 0.49 1.4117(32) 0.07
004 13528(22) 291  1.3388(72) 1.01  1.3631(46)  1.16
0.0625 1.3145(30) 1.34  1.2976(62) 0.87  1.3286(50)  1.28
009 1.2433(59) 109 1.2508(62) 0.98  1.2864(109)  0.60

Table 1: Summary of the values g8;(u?) obtained by fitting the peaks of the susceptibilities of ahir
condensaté@y), Polyakov loop(L) and plaquettéP) in SU(2) on a 18 x 4 lattice with fermion mass
am=0.07. For each interpolation the/d.o.f. is given.

In this section we present our results in the determinatfgheocritical line in two-color QCD
using the method of analytic continuation. Contrary to tasecof physical observables discussed
in the previous section, the theoretical basis is not gttiigvard since it relies on the assumption
that susceptibilities, whose peak signals the presendeedfansition, be analytic functions of the
parameters on a finite volume [1, 2]. We have tested the methalalytic continuation in the case
of two-color QCD and in the case of QCD ad finite isospin dgndi8, 19]. As for usual QCD
simulations, we have determined the critical line for inmagy values of the chemical potential
(u? < 0) and interpolate them by suitable functions to be continiegu? > 0. In order to test the
reliability of the analytic continuation, the predictiobtained at realt has been compared with
direct determinations of the transition line.
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Figure 4: Critical couplings obtained from the susceptibility of @licondensate in SU(2) on a6 4
lattice withanm=0.07 (left) andam=0.2 (right), together with a linear fit (dotted line) {au)? to data with
u? < 0. The solid lines around the best fit line delimit the 95% Cgioe.
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Figure 5: Critical couplings obtained from the susceptibility of Pakov loop in SU(2) on a 16x 4 lattice
with am=0.07 (left) andam=0.2 (right), together with a linear fit (dotted line) fau)? to data withu? < 0.
The solid lines around the best fit line delimit the 95% CL oegi

It should be remarked that on a finite volume there are no tomamalyticities, therefore the
location of the critical line may depend on the observableseh to probe the transition. Conse-
quently we have determined the (pseudo-)critical coupBg@:?) by looking at the peaks of the
susceptibilities of three different observables: thealhiondensate, the Polyakov loop, and the
plaquette. In figure 3 we show an example of this determinatige have fitted the peak according
to a Lorentzian function. The result obtained in this way fefu?) agrees well with the result
obtained by means of the multihistogram reweighting.

In table 1 the values ¢8;(u?) obtained in correspondence of the different "probe" olzses
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(at fermion masam= 0.07) are shown. They depend very weakly on the observabldédsyed
(only in one case the relative deviation between two deteatiuns at the samg? slightly ex-
ceed &). The strategy is now to interpolate the critigd$ obtained at fixed imaginary chemical
potential with an analytic function gf, to be then extrapolated to real chemical potential. For a
theory free from the sign problem (such as two-color QCD)edkeapolated curve can be com-
pared with the determinations of the critigés at real chemical potential obtained through a direct
computation.

As displayed on the left sides of figure 4 and figure 5, imagirdremical potential data
are very well fitted with a linear polynomial ip2. If different functions are used (larger order
polynomials, ratio of polynomials) the fit puts to value catible with zero all parameters (except
two of them) thus reducing again to a first order polynomialifn This is in marked difference
with what we found (see previous section and ref. [9]) for émalytic continuation of physical
observables, where the ratio of polynomials performed vezll. Moreover, on the left sides of
figures 4 and 5, we can clearly see a quite significative devidtetween extrapolation and direct
determination of the critical line at real chemical potehtiThe discrepancy found could imply
that or the the critical line is not analytic on the whole inte of u? or that the interpolation at
u? < 0is not accurate enough to correctly reproduce the behatjot > 0. Indeed we have found
(see figure 6) that a polynomial of third order jif nicely fits all data forB.(u?) and therefore
the critical line is analytic on the whole interval pP. A possible conclusion is that fqr? < 0
the u* and u® terms compensate each other at large negative valugg eb that the effective
interpolating function of the data at® < 0 is a first order polynomial im? while for u? > 0 the
u* andu® terms work in the same direction and their contribution cartre neglected.

In order to verify if this scenario is peculiar to SU(2) we banvestigated the same theory
with a different masam= 0.2 for then; = 8 degenerate fermions. We have also examined the
case of SU(3) at finite isospin [19, 20]. The reason for cars&l(2) at a larger value for the quark
mass is that at any fixed temperatdreghe critical value ofu gets larger, consequently the critical
line could become less curved in the physical regidn> 0. Accordingly higher order terms in?
in the description of the critical line by a polynomial colid less important. We have sampled the
critical line for SU(2) and quark massn= 0.2. The best interpolation ¢.(u?) data atu? <0 is
a polynomial linear inu? and, at variance with the case of quark mass= 0.07, the extrapolation
to u? > 0 compares very well with the direct determinationffu?) in that region. So we can
argue that the the extrapolationid > 0 works definitely better for larger quark masses, i.e. away
form the chiral limit.

4. Conclusions

We have reported here an investigation which is part of aetapgoject devoted to study the
method of analytic continuation in QCD-like theories freenh the sign problem and to improve
its predictivity in view of its application to QCD.

For what concerns analytic continuation of physical obseles we have shown that a con-
siderable improvement can be achieved, when extrapoldtite from imaginary to real chemical
potentials, if ratios of polynomials are used as interpotatunctions (for a thorough discussion
see ref. [9]).
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Figure 6: Same as in figure 4, but with results of a fit to all data inclgdzrm up to ordep®.

We have also presented results for the analytic continuatfahe critical line in the(T, u)
plane from imaginary to real chemical potential both in tasecof two-color QCD. We have found
that the critical line aroungi = 0 can be described by an analytic function. Indeed, a thideror
polynomial inu? fits all the available data for the critical coupling.

We have shown that there is a clear indication that in theathimit high-order terms in the
polynomial interpolation play a relevant role @t > 0 but are less visible gi? < 0, this calling
for extremely high accuracy in detecting such terms fromustions atu? < 0. The predictions
for the pseudocritical couplings at real chemical potésitmay be wrong if data at imaginagy
are fitted according to a linear dependence.

All the issues above have undergone further investigatica different theory such as SU(3)
at finite isospin (results for SU(3) at finite isospin are d&sed in refs. [19, 20]).

The lessons we learned in studying analytic continuatio@@D-like theory free from the
sign problem will be used in the near future to the deternmonahe critical line for real QCD.
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