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The strong coupling limit (βgauge= 0) of QCD offers a number of remarkable research possi-

bilities, of course at the price of large lattice artifacts.Here, we determine the complete phase

diagram as a function of temperatureT and baryon chemical potentialµB, for one flavor of stag-

gered fermions in the chiral limit, with emphasis on the determination of a tricritical point and

on theT ≈ 0 transition to nuclear matter. The latter is known to happenfor µB substantially

below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling.

This leads us to studying the properties of nuclear matter from first principles. We determine

the nucleon-nucleon potential in the strong coupling limit, as well as massesmA of nuclei as a

function of their atomic numberA. Finally, we clarify the origin of nuclear interactions at strong

coupling, which turns out to be a steric effect.
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Nuclear physics at strong coupling

1. Model and motivation

We study lattice QCD with one species of staggered fermions at infinite gauge coupling [1].
The partition function

Z(mq,µ) =
∫

DUD χ̄Dχ eSF, (1.1)

depends on the staggered quark massmq and the baryon chemical potentialµB. Sinceβgauge= 0,
we only have the fermionic actionSF with

SF = ∑
x,ν=1,4

ηx,ν̂ χ̄x

[

Ux,ν̂ χx+ν̂ −U†
x−ν̂,ν̂ χx−ν̂

]

+2mq∑
x

χ̄xχx (1.2)

whereηx,ν̂ =(−1)∑ρ<ν xρ , ηx,1̂ =1. The quark chemical potentialµ and an anisotropyγ are intro-
duced by multiplying the time-like gauge linksUx,±4̂ by γ exp(±aµ/γ) in the forward and back-
ward directions, respectively. The anisotropy allows to vary the temperature continuously, via
T =a−1γ2/Nτ at infinite coupling [2, 3].

Whenmq = 0, our model is invariant under globalU(1)A×U(1)B transformations

χ(x) → ei(ε(x)θA+θB)χ(x), χ̄(x) → χ̄(x)ei(ε(x)θA−θB) ∀ x, (1.3)

whereε(x)=(−1)∑4 xν . While U(1)B is responsible for baryon number conservation and remains
unbroken,U(1)A represents the chiral symmetry of the model and can break spontaneously.

Owing to the absence of the gauge action in Eq. (1.2), the link integration factorizes in Eq. (1.1)
and can be done analytically [4]. The degrees of freedom are now mesons and baryons. Carrying
out the Grassmann integration, the partition function Eq. (1.1) becomes formq = 0 that of a dimer-
loop model [1]:

Z(mq = 0,µ) = ∑
{nx,ν̂ ,C}

∏
x,ν̂

γ2δν ,4nx,4̂
(3−nx,ν̂)!

nx,ν̂ ! ∏
C

w(C) , (1.4)

with the constraint that mesonic links with occupation numbernx,ν̂ = 0, ..,3 attached to a sitex
satisfy ∑±µ nx,±µ̂ = 3. Alternatively, a site can be traversed by a self-avoiding baryon loopC.
The weight of such a loopC is given byw(C)=ρ(C)γ3N4̂(C) exp(3kµaNτ/γ). Here,N4̂(C) is the
number of links on the loop in the time direction,k is its winding number in this direction and
ρ(C)=±1 is a geometry-dependent sign, which can be negative even whenµ = 0. Karsch and
Mütter [1] removed the sign problem present already atµ = 0 by analytically resumming pairs of
configurations. Whenµ > 0 the remaining sign problem is mild (see next Section), allowing us to
simulate large enough lattices that the phase diagram of the model can be determined reliably.

There exists a plethora of mean-field results dating back to the early days oflattice QCD [5]
and continuing up to now [6, 7], with the inclusion of NLO and NNLO corrections to the infinite
coupling limit [8], and statements about a quarkyonic phase [9]. These approximate predictions
should be checked against numerical simulations using an exact algorithm.

Moreover, lattice QCD should provide the means to study nuclear physics from first principles.
In lattice QCD atweak coupling, properties of single hadrons [10], nuclear scattering lengths and
potentials [11, 12, 13] or two-and three baryon systems [14] are being studied. Going to higher
nuclear matter density is mostly hindered by a severe sign problem. Contrary tothat, the strong
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Figure 1: Finite-size scaling of the chiral susceptibility near the phase transition, with (a) d = 3, O(2)

exponents ataµ = 0 andaµ = 0.3, and (b,top) tricritical (mean-field) exponents ataµ = 0.33. Lines are
drawn to guide the eye. Foraµ = 0.36 (b, bottom), we instead rescale they-axis with L−γ/ν = L−3 and
observe thatχσ/L3 goes to a constant forT < Tc(µ). The solid lines are fits derived from the first-order
ansatz Eq. (2.4). All results have been obtained forNτ = 4. Errors are of the size of the symbols.

coupling limit offers not only the possibility to study nuclear matter at higher density thanks to the
mild sign problem, but also provides an intuitive understanding, owing to the point-like nature of
baryons and pions in this limit. The absence of earlier numerical studies of thestrong coupling
version of nuclear physics is mostly due to algorithmic issues present in the early studies [1, 15].
Decisive progress occurred with the introduction of the worm algorithm [16], which has been
adapted for strong couplingSU(2) andU(3) lattice theories in [17], enabling efficient Monte Carlo
sampling even in the chiral limitmq→0. We extend this approach toSU(3).

2. Phase diagram

Since we consider here the case of a massless quark, the chiral symmetryU(1)A Eq. (1.3) is
exact but spontaneously broken at small(T,µ), with order parameter〈ψ̄ψ〉. Whenµ =0, a mean-
field analysis predicts symmetry restoration ataTc=5/3, whereas the Monte Carlo study of [2] on
Nτ =4 lattices, extrapolated tomq=0, findsaTc=1.41(3). In order to determineTc we performed
numerical simulations ataµ = 0,amq = 0. Our main observable is the chiral susceptibility

χσ =
1
V

∂ 2

∂m2
q

logZ

∣

∣

∣

∣

∣

mq=0

= 〈∑
x

ψ̄ψ(x)ψ̄ψ(0)〉 , (2.1)

where we used the fact that in a finite volume the order parameter〈ψ̄ψ〉 vanishes identically.
Correspondingly,χσ will not show a peak at the transition but finite size scaling (FSS) still applies,
so that for a system of sizeL3×Nτ at a “reduced temperature”t = 1−T/Tc (or 1−µ/µc):

χσ ∼ Lγ/ν χ̃(tL1/ν) = Lγ/ν
(

a0 +O(tL1/ν)
)

. (2.2)

In principle, this allows us to determine the exponentsγ and ν , which should be those of the
d = 3, O(2) universality class [20]. In practice however, the numerical values areclose to those
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Figure 2: (a) (µ ,T) phase diagram of 1-flavor strong coupling QCD with massless staggered fermions
(Nτ = 4). (b) a4∆ f = −γ2 log(〈sign〉)/(L3Nτ) versusaµ atT = TTCP. Lines are drawn to guide the eye.

of the Z(2) universality class and we point to [21] for a more advanced treatment in thecase of
U(3). Here, we simply assumed = 3, O(2) exponents and show thatχσ collapses on a universal
curve when rescaled according to Eq. (2.2). For example, Fig. 1(a) (top) shows the collapse for
µ = 0,Nτ = 4 and several values ofL, with aTc fixed to 1.402 which is the crossing point ofχσ/Lγ/ν

when plotted as a function ofT. Using this strategy, we findaTc =1.319(2),1.402(3),1.417(3),
respectively, forNτ = 2,4,6, indicating anNτ →∞ limit about 15% smaller than the mean-field
prediction.

For µ > 0 the model has a sign problem. We have measured the “average sign”

〈sign〉 =
Z
Z‖

= exp(−∆ fV/T) = exp(−a4∆ f L3Nτ/γ2) , (2.3)

whereZ‖ corresponds to the partition functionZ of Eq. (1.4), but taking the absolute value of the
weights. The free energy density difference(a4∆ f ) is a measure of the severity of the sign problem.
Fig. 2(b) shows(a4∆ f ) as a function ofaµ, for severalL3×4 lattices atT = 0.937a−1 ≈ TTCP (see
below), using the analytic resummation prescription of Karsch and Mütter [1]which removes the
sign problem atµ = 0. ∆ f is nicely volume-independent, vanishes atµ = 0, starts∝ µ2 (see inset),
and peaks slightly past the phase transition. Note the very small magnitudeO(10−4) – compared
to (a4∆ f )∼O(1) expected when using the standard approach of integrating over the fermions first
– which allows us to simulate 163×4 lattices with〈sign〉 ≥ 0.1.

For the available volumes, we may then follow the critical line asaµ increases, monitoring
the collapse ofχσ using the appropriate critical exponents. Expectations are that the second order
O(2) transition will turn first order at a tricritical point (TCP) for some nonzeroµ. From Fig. 1(a)
(bottom), we see that foraµ = 0.3, χσ still obeysO(2) scaling behavior. With a slight increase
to aµ = 0.33 Fig. 1(b) (top), a satisfactory collapse requires tricritial (mean-field)exponentsγt =

1,νt = 1/2. Under a further small increase toaµ = 0.36 no such finite-size scaling collapse can be
achieved. Instead, the transition is first-order:(i) the distribution of the baryon density shows two
peaks, whose areas become equal ataTc = 0.844(1); (ii) for T < Tc, χσ/L3 becomesL-independent
(see Fig. 1(b) (bottom));(iii ) on either side ofTc, χσ is well described by differentiating the two-
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phase Borgs-Kotecky ansatz [23]

Z(T) = exp(−V
T

f1(T))+cexp(−V
T

f2(T)) (2.4)

with f1,2(T) = f0±α(T −Tc), from which the solid curves can be obtained. Thus, from the avail-
able data we conservatively conclude that(aµTCP,aTTCP) = (0.33(3),0.94(7)). This should be
compared with the analytic prediction(0.577,0.866) of [7]. The rather large difference inµ un-
derlines theO(1/d) accuracy of a mean-field treatment, and justifies a posteriori our Monte Carlo
study. In Fig. 2(a) we summarize our findings for the phase diagram. In spite of its resemblance
to the expected deconfinement transition in masslessNf = 2 QCD, here the two phases are both
confining, with point-like mesons and baryons, and so the phase transition is todense, chirally
symmetric nuclear matter. AtT =0 the baryon density jumps from 0 to 1, a saturation value caused
by the self-avoiding nature of the baryon loops, which itself originates from their fermion content.
Using the baryon mass to fix the lattice spacing, this represents about 4 nucleons per fm3, around
25 times the real-world value. An intriguing feature of thisT =0 transition - and an important mo-
tivation for this study - is the value ofµcritical

B , which both mean-field [5] and an early Monte Carlo
study [1] find much smaller than the naive threshold valuemB. However, the ergodicity of the sim-
ulations of [1] was questioned in [15], which was found to be justified in [24]. This motivated us to
redetermineµcrit

B (T =0) using an improved method inspired by the “snake” algorithm [25]: When
two phases coexist, the free energy∆F/T necessary to increase by a “slice”L×L×a the volume
occupied by dense nuclear matter can be decomposed intoL2 elementary contributions, looking
generically like Fig. 3(a), where one additional static baryon is attached to 3neighbors. We mea-
sured the free energy∆F/T of this elementary increment on a large 83×16 lattice, and obtained
a∆F =aµcrit

B =1.78(1), rather close to both mean-field predictions [5] and Monte Carlo extrapo-
lations [1]. This we compare toamB which corresponds to the difference in free energy measured
at µ = 0,T ≈ 0 by extending a static baryon world line. We findamB = 2.88(1), consistent with
HMC simulations [18], and again in agreement with mean-field [5] and large-Nc [19] predictions
but indeed much larger thanaµcrit

B . As already recognized in [26], the reason thatµcrit
B < mB must

then be the presence of a strong nuclear attraction, to which we now turn.

3. Nuclear Physics at infinite gauge coupling

Since our baryons are point-like, there is no conceptual difficulty in defining the nuclear po-
tentialVNN(R), unlike in the real world [27]. We measuredVNN using again the “snake” algorithm,
this time extending little by little in Euclidean time the worldline of a second baryon at distance
R from the first. The result is shown in Fig. 3(c). Aside from the hard-core repulsion, there is
indeed a strong nearest-neighbor attraction, a slight repulsion at distance a

√
2, and almost no in-

teraction beyond that distance.VNN is similar qualitatively to what is expected in the real world,
with competition between attractiveσ exchange and repulsiveω exchange. The depth of the min-
imum∼120 MeV and the corresponding distance∼0.6 fm are quantitatively plausible [28]. This
nearest-neighbor attraction also explains a posteriori the value ofµcrit

B : each baryon added to the
dense phase binds with 3 nearest neighbors, which reduces the increase in free energy fromamB to
only a(mB +3VNN(a)) ≈ 1.7, consistent withaµcrit

B .
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Figure 3: (a) Adding a baryon to grow an additional layer of bulk nuclear matter: each new baryon binds
to 3 nearest-neighbors. (b) Building a first layer of nuclear matter inside the hadron gas, thus creating two
interfaces: each new baryon binds to 2 nearest-neighbors. (c) Energy of a second static baryon at distance
R from the first,i.e., (mB +VNN(R)), whereVNN(R) is the nuclear interaction potential. The horizontal band
indicates the mass of an isolated baryon and corresponds toVNN = 0. At R= 0 the potential is infinitely
repulsive.

Similarly, we can predict theT = 0 surface tension of nuclear matter: in a periodic cubic
box, when building a first “slice” of nuclear matter with two interfaces in the dilute phase, each
new baryon binds with only 2 nearest-neighbors (Fig. 3(b)) instead of 3in the bulk (Fig. 3(a)),
thus increasing its free energy by|VNN(a)| for an increase of 2a2 in the interface area, yielding
σ ≈ a−2

2 |VNN(a)|.
This large interface tension has an impact on the stability of nuclei of varioussizes and shapes:

for a given atomic numberA, those with a shape close to a sphere (or a cube) will have a smaller
mass. Using the same variant of the “snake” algorithm, we have added baryons, one by one, to form
such nuclei while measuring the successive increments in free energy. For A=2 our “deuteron”
binding energy is about 120 MeV: the real-world binding energy of∼2 MeV results from delicate
cancellations which do not occur in our 1-flavor model, and the binding energy remains of the same
magnitude as the depth ofVNN. For largerA, the resulting Fig. 4(a) does indeed show increased
stability for nuclei having square (A=4), cubic (A=8) or parallelepipedic (A=12) shapes. Other
“isomers” with different shapes, studied exhaustively forA=4 and sketched Fig. 4(b), have clearly
larger masses. Moreover, the average mass per nucleon is well described by the first two (bulk and
surface tension) terms of the Weizsäcker phenomenological formula:

m(A)/A = µcrit
B +(36π)1/3a2σA−1/3, (3.1)

whereσ is set equal toa
−2

2 |VNN(a)| in the Figure. The next higher-order terms in this formula come
from isospin and Coulomb forces, which are both absent in our model.

4. Summary and Remarks

An interesting aspect of our study is theorigin of the nuclear interaction. The nucleons are
point-like and self-avoiding, so that only the hard-core repulsion is explicit. There is no pion
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Figure 4: (a) Mass per nucleon ofA= 1, ..,12 nuclei. ForA= 3,4 all possible geometric isomers are
included. The solid line shows the parameter-free Bethe-Weizsäcker Eq. (3.1), with the surface tensionσ
set toa−2

2 |VNN(a)|. (b) Corresponding nuclear geometries in order of increasing mass. (c) Energy density of
the pion cloud as a function of the Euclidean distance to a static baryon.

exchange. In a way reminiscent of the Casimir effect between two neutralplates, the interaction
proceeds by the rearrangement of the pion bath caused by the excludedvolume of the nucleon.
This rearrangement is visible Fig. 4(c) for one nucleon: at a neighboring site, the three pion lines
attached to each site have fewer options and orient more often along the Euclidean time, which
increases the pion energy. In fact, the nucleon massamB≈2.88 can be decomposed into a bare
mass 3− 3/4= 2.25, which is the energy increase “inside” the nucleon and can be assigned to
the three valence quarks, and an energy increase≈0.63 in the surrounding pion “cloud”. When
two nucleons are next to each other, the latter increase is limited to 10 nearest-neighbors instead
of 2×6, which explains the attraction between them (in sign and roughly in magnitude). This
excluded volume or “steric” effect is thus the origin of the nuclear potential,and ultimately of
nuclear stability, in our model. In real QCD, the pion density is not constrained as in Eq. (1.4).
Nevertheless, it is going to be high at temperaturesT ∼mπ [29] and one should expect the same
steric effect to enhance nuclear attraction at such temperatures.

To summarize, in a crude model of QCD, 1-flavor massless lattice staggered fermions at strong
couplingβgauge=0, we have been able to obtain the complete phase diagram and derive the strong
coupling version of nuclear interactions and nuclear masses from first principles, uncovering a
simple, but universal, steric origin of the nuclear interaction. This model can be improved in many
ways. One simple modification consists of giving a non-zero mass to the quarks: the nuclear inter-
action will weaken as the pion mass is increased, in a way which can be compared with effective
field theories. Less simple but feasible improvements include introducing isospin with a second
quark flavor, and measuring theO(β ) correction as done analytically in [30, 31, 8]. These will
bring our model much closer to real QCD.

Acknowledgments. The work of M.F. was supported by ETH Research Grant TH-07 07-2.
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