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The strong coupling limit Byauge= 0) of QCD offers a number of remarkable research possi-
bilities, of course at the price of large lattice artifactdere, we determine the complete phase
diagram as a function of temperatureand baryon chemical potentigg, for one flavor of stag-
gered fermions in the chiral limit, with emphasis on the daiaation of a tricritical point and

on theT = 0 transition to nuclear matter. The latter is known to hapfeenug substantially
below the baryon mass, indicating strong nuclear intesastin QCD at infinite gauge coupling.
This leads us to studying the properties of nuclear mattan ffirst principles. We determine
the nucleon-nucleon potential in the strong coupling lirag well as massasa of nuclei as a
function of their atomic numbehk. Finally, we clarify the origin of nuclear interactions &tasg
coupling, which turns out to be a steric effect.
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Nuclear physics at strong coupling

1. Model and motivation

We study lattice QCD with one species of staggered fermions at infinite gawgpdirg [1].
The partition function

Z(m, u) = [ PUTXIx €, (1.1)

depends on the staggered quark nragsind the baryon chemical potentjat. Sincefyauge= 0,
we only have the fermionic actid® with

S= Z rlx,O)?x |:UX,\7XX+\7 - UI poX ] +2my ZXxXx (1.2)

x,v=14

whereny ; = (—1)2p<v¥o, n,i=1. The quark chemical potential and an anisotropy are intro-
duced by multiplying the time-like gauge linkg _; by yexp(+au/y) in the forward and back-
ward directions, respectively. The anisotropy allows to vary the temperatntinuously, via
T =a1y?/N; at infinite coupling [2, 3].

Whenmy = 0, our model is invariant under globdl(1)a x U (1)g transformations

X(X) — &ENRTRIY (%), X(x) — X(x)€E0R®) v x, (1.3)

whereg(x) = (—1)24%. While U (1)g is responsible for baryon number conservation and remains
unbrokenl (1) represents the chiral symmetry of the model and can break spontaneously

Owing to the absence of the gauge action in Eq. (1.2), the link integratiomitaetan Eq. (1.1)
and can be done analytically [4]. The degrees of freedom are nowmesal baryons. Carrying
out the Grassmann integration, the partition function Eq. (1.1) becomes, fer0 that of a dimer-
loop model [1]:

I
zm=om=y ]l fue) a4
{nx%c} X,V %,V C

with the constraint that mesonic links with occupation numtygr = 0, ..,3 attached to a site
satisfy y ., N+ = 3. Alternatively, a site can be traversed by a self-avoiding baryon op
The weight of such a loo@ is given byw(C C)y*™(©) exp(3kpaN; /y). Here,N;(C) is the
number of links on the loop in the time dlrectloln,ls its winding number in this direction and
p(C)=+1 is a geometry-dependent sign, which can be negative even wkeb. Karsch and
Muitter [1] removed the sign problem present already at O by analytically resumming pairs of
configurations. Whep > 0 the remaining sign problem is mild (see next Section), allowing us to
simulate large enough lattices that the phase diagram of the model can lmeidetereliably.

There exists a plethora of mean-field results dating back to the early dégtsicd QCD [5]
and continuing up to now [6, 7], with the inclusion of NLO and NNLO corratsido the infinite
coupling limit [8], and statements about a quarkyonic phase [9]. Thga®xmate predictions
should be checked against numerical simulations using an exact algorithm.

Moreover, lattice QCD should provide the means to study nuclear physiodifist principles.
In lattice QCD atweak couplingproperties of single hadrons [10], nuclear scattering lengths and
potentials [11, 12, 13] or two-and three baryon systems [14] are béudied. Going to higher
nuclear matter density is mostly hindered by a severe sign problem. Contréngttdhe strong
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Figure 1: Finite-size scaling of the chiral susceptibility near theage transition, witha) d = 3, O(2)
exponents aau = 0 andau = 0.3, and b,top) tricritical (mean-field) exponents att = 0.33. Lines are
drawn to guide the eye. Fau = 0.36 (b, bottom), we instead rescale tiieaxis with L=¥/V = L=3 and
observe thajy /L3 goes to a constant foF < T.(u). The solid lines are fits derived from the first-order
ansatz Eq. (2.4). All results have been obtained\fpor= 4. Errors are of the size of the symbols.

coupling limit offers not only the possibility to study nuclear matter at higheritettenks to the
mild sign problem, but also provides an intuitive understanding, owing to the-|ke nature of
baryons and pions in this limit. The absence of earlier numerical studies stribreg coupling
version of nuclear physics is mostly due to algorithmic issues present inliyestalies [1, 15].
Decisive progress occurred with the introduction of the worm algorith6j, [ivhich has been
adapted for strong couplirg(2) andU (3) lattice theories in [17], enabling efficient Monte Carlo
sampling even in the chiral limity— 0. We extend this approach &J(3).

2. Phase diagram

Since we consider here the case of a massless quark, the chiral syrbietgyEg. (1.3) is
exact but spontaneously broken at sni@llu), with order parametefiy /). Whenu =0, a mean-
field analysis predicts symmetry restoratiom®=5/3, whereas the Monte Carlo study of [2] on
N; =4 lattices, extrapolated o, =0, findsaT.=1.41(3). In order to determind; we performed
numerical simulations &y = 0,am, = 0. Our main observable is the chiral susceptibility

2
Xo = 1 LIOQZ

V one

where we used the fact that in a finite volume the order paranigitgn vanishes identically.
Correspondinglyyg will not show a peak at the transition but finite size scaling (FSS) still applies,
so that for a system of sid€® x N; at a “reduced temperature’=1—T /T (or 1— p1/ o):

= (S FWPW(0)., (2.1)

X

mg=0

Xo ~ LYV LYYy = LYV (a0+ ﬁ(tLl/")) . 2.2)

In principle, this allows us to determine the exponeytand v, which should be those of the
d =3, O(2) universality class [20]. In practice however, the numerical valueslas® to those
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Figure 2: (a) (4, T) phase diagram of 1-flavor strong coupling QCD with masslésggered fermions
(N; = 4). (b) a*Af = —y?log((sign))/(L3N;) versusau at T = Trcp. Lines are drawn to guide the eye.

of the Z(2) universality class and we point to [21] for a more advanced treatment icatbe of
U(3). Here, we simply assunte= 3, O(2) exponents and show thgt collapses on a universal
curve when rescaled according to Eq. (2.2). For example, Fig. 1(a) ¢teows the collapse for
u =0,N; = 4 and several values bf with aT. fixed to 1402 which is the crossing point gf; /LY/"
when plotted as a function df. Using this strategy, we findT, =1.3192),1.402(3),1.417(3),
respectively, folN; = 2,4, 6, indicating anN; — oo limit about 15% smaller than the mean-field
prediction.

For i > 0 the model has a sign problem. We have measured the “average sign”

(sign) = ZZ| = exp(—AfV/T) = exp(—a*AfL3N; /y?), (2.3)

whereZ, corresponds to the partition functi@nof Eqg. (1.4), but taking the absolute value of the
weights. The free energy density differerfedAf) is a measure of the severity of the sign problem.
Fig. 2(b) showga*Af) as a function o, for several® x 4 lattices afl = 0.937a~! ~ Trcp (See
below), using the analytic resummation prescription of Karsch and Muttevtjigh removes the
sign problem a1 = 0. Af is nicely volume-independent, vanishegiat 0, startd] 2 (see inset),
and peaks slightly past the phase transition. Note the very small maguitid=*) — compared

to (a®Af) ~ €'(1) expected when using the standard approach of integrating over the fsrfinii

— which allows us to simulate 6« 4 lattices with(sign) > 0.1.

For the available volumes, we may then follow the critical lineagsincreases, monitoring
the collapse of(s using the appropriate critical exponents. Expectations are that thedsertsr
O(2) transition will turn first order at a tricritical point (TCP) for some nonzgradFrom Fig. 1(a)
(bottom), we see that faau = 0.3, X still obeysO(2) scaling behavior. With a slight increase
to au = 0.33 Fig. 1(b) (top), a satisfactory collapse requires tricritial (mean-fetgpnentss =
1,v; = 1/2. Under a further small increaseap = 0.36 no such finite-size scaling collapse can be
achieved. Instead, the transition is first-ordgj:the distribution of the baryon density shows two
peaks, whose areas become equallat= 0.844(1); (ii) for T < T, Xo /L2 becomed -independent
(see Fig. 1(b) (bottom);iii ) on either side ofl, X is well described by differentiating the two-
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phase Borgs-Kotecky ansatz [23]
Z(T)= eXF(—\?/fl(T))—FCGXF(—\?/fz(T)) (2.4)

with f12(T) = fo£ a(T —T¢), from which the solid curves can be obtained. Thus, from the avail-
able data we conservatively conclude tifatircp,aTrcp) = (0.33(3),0.94(7)). This should be
compared with the analytic predictid0.577,0.866) of [7]. The rather large difference ip un-
derlines theZ’(1/d) accuracy of a mean-field treatment, and justifies a posteriori our Monte Car
study. In Fig. 2(a) we summarize our findings for the phase diagram. it aipits resemblance

to the expected deconfinement transition in masdgss 2 QCD, here the two phases are both
confining, with point-like mesons and baryons, and so the phase transitiordenge, chirally
symmetric nuclear matter. At=0 the baryon density jumps from 0 to 1, a saturation value caused
by the self-avoiding nature of the baryon loops, which itself originates ftteir fermion content.
Using the baryon mass to fix the lattice spacing, this represents about 4msigler fni, around

25 times the real-world value. An intriguing feature of tfiiis-0 transition - and an important mo-
tivation for this study - is the value @f§"°@, which both mean-field [5] and an early Monte Carlo
study [1] find much smaller than the naive threshold vatge However, the ergodicity of the sim-
ulations of [1] was questioned in [15], which was found to be justified if.[Z4is motivated us to
redetermineug”t(T =0) using an improved method inspired by the “snake” algorithm [25]: When
two phases coexist, the free eneffy/T necessary to increase by a “slide* L x a the volume
occupied by dense nuclear matter can be decomposed dretementary contributions, looking
generically like Fig. 3(a), where one additional static baryon is attachedhéighbors. We mea-
sured the free energyF /T of this elementary increment on a large>816 lattice, and obtained
alAF = au§™=1.78(1), rather close to both mean-field predictions [5] and Monte Carlo extrapo-
lations [1]. This we compare tamg which corresponds to the difference in free energy measured
atu =0,T ~ 0 by extending a static baryon world line. We fiadg = 2.88(1), consistent with
HMC simulations [18], and again in agreement with mean-field [5] and IBkgié-9] predictions

but indeed much larger thaarug”t. As already recognized in [26], the reason thgt't < mg must
then be the presence of a strong nuclear attraction, to which we now turn.

3. Nuclear Physics at infinite gauge coupling

Since our baryons are point-like, there is no conceptual difficulty in thefithe nuclear po-
tentialVyn (R), unlike in the real world [27]. We measur®gy using again the “snake” algorithm,
this time extending little by little in Euclidean time the worldline of a second baryon atndista
R from the first. The result is shown in Fig. 3(c). Aside from the harcea@pulsion, there is
indeed a strong nearest-neighbor attraction, a slight repulsion at distgf®; and almost no in-
teraction beyond that distanc®yy is similar qualitatively to what is expected in the real world,
with competition between attractivie exchange and repulsive exchange. The depth of the min-
imum ~ 120 MeV and the corresponding distarc®.6 fm are quantitatively plausible [28]. This
nearest-neighbor attraction also explains a posteriori the valuugr‘bf each baryon added to the
dense phase binds with 3 nearest neighbors, which reduces theseordigee energy froranmg to
only a(mg + 3Van()) &~ 1.7, consistent withauS™.
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Figure 3: (a) Adding a baryon to grow an additional layer of bulk nucleaatter: each new baryon binds
to 3 nearest-neighborsb)(Building a first layer of nuclear matter inside the hadros,ghus creating two
interfaces: each new baryon binds to 2 nearest-neighbgr&nergy of a second static baryon at distance
Rfrom the firsti.e, (mg +Wn(R)), whereVyn(R) is the nuclear interaction potential. The horizontal band
indicates the mass of an isolated baryon and correspondgte- 0. At R=0 the potential is infinitely
repulsive.

Similarly, we can predict th& = 0 surface tension of nuclear matter: in a periodic cubic
box, when building a first “slice” of nuclear matter with two interfaces in thetdijphase, each
new baryon binds with only 2 nearest-neighbors (Fig. 3(b)) insteadinftBe bulk (Fig. 3(a)),
thus increasing its free energy Iyn(a)| for an increase of & in the interface area, yielding
o~ Vun(a)).

This large interface tension has an impact on the stability of nuclei of vasinas and shapes:
for a given atomic numbeh, those with a shape close to a sphere (or a cube) will have a smaller
mass. Using the same variant of the “snake” algorithm, we have addezhisapne by one, to form
such nuclei while measuring the successive increments in free enesga=F2 our “deuteron”
binding energy is about 120 MeV: the real-world binding energy@MeV results from delicate
cancellations which do not occur in our 1-flavor model, and the bindingggmemains of the same
magnitude as the depth ¥§N. For largerA, the resulting Fig. 4(a) does indeed show increased
stability for nuclei having squaréA& 4), cubic A=8) or parallelepipedicA=12) shapes. Other
“isomers” with different shapes, studied exhaustively&et 4 and sketched Fig. 4(b), have clearly
larger masses. Moreover, the average mass per nucleon is well éedayithe first two (bulk and
surface tension) terms of the Weizsacker phenomenological formula:

m(A) /A = ps™ + (36m)Y/3a?0A1/3, (3.1)

whereo is set equal té‘;—2 [Vn ()| in the Figure. The next higher-order terms in this formula come
from isospin and Coulomb forces, which are both absent in our model.

4. Summary and Remarks

An interesting aspect of our study is tbegin of the nuclear interaction. The nucleons are
point-like and self-avoiding, so that only the hard-core repulsion is @kplithere is no pion
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Figure 4: (a) Mass per nucleon oA=1,..,12 nuclei. ForA=3 4 all possible geometric isomers are
included. The solid line shows the parameter-free Bethedleker Eq. (3.1), with the surface tension
set to%2|VNN(a)|. (b) Corresponding nuclear geometries in order of increasiagsn¢) Energy density of
the pion cloud as a function of the Euclidean distance totecdiaryon.

exchange. In a way reminiscent of the Casimir effect between two neldtals, the interaction
proceeds by the rearrangement of the pion bath caused by the exeidete of the nucleon.
This rearrangement is visible Fig. 4(c) for one nucleon: at a neighdpaitr, the three pion lines
attached to each site have fewer options and orient more often along thdeancime, which
increases the pion energy. In fact, the nucleon naamgs~ 2.88 can be decomposed into a bare
mass 3- 3/4=2.25, which is the energy increase “inside” the nucleon and can be adsigne
the three valence quarks, and an energy increa@&3 in the surrounding pion “cloud”. When
two nucleons are next to each other, the latter increase is limited to 10 neaigisibors instead
of 2x 6, which explains the attraction between them (in sign and roughly in magnituides
excluded volume or “steric” effect is thus the origin of the nuclear poteraiadi ultimately of
nuclear stability, in our model. In real QCD, the pion density is not constdaasein Eq. (1.4).
Nevertheless, it is going to be high at temperatiresm;; [29] and one should expect the same
steric effect to enhance nuclear attraction at such temperatures.

To summarize, in a crude model of QCD, 1-flavor massless lattice staggeneidfs at strong
coupling Byauge= 0, we have been able to obtain the complete phase diagram and derivetie str
coupling version of nuclear interactions and nuclear masses from firgtigdes, uncovering a
simple, but universal, steric origin of the nuclear interaction. This modebeamproved in many
ways. One simple modification consists of giving a non-zero mass to thegjuheknuclear inter-
action will weaken as the pion mass is increased, in a way which can be cmnpin effective
field theories. Less simple but feasible improvements include introducinginsegh a second
quark flavor, and measuring tl@([3) correction as done analytically in [30, 31, 8]. These will
bring our model much closer to real QCD.
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