PROCEEDINGS

OF SCIENCE

Chiral Lagrangian and spectral sum rules for
two-color QCD at high density

Takuya Kanazawa *

Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
E-mail: tkanazawa@nt.phys.s.u-tokyo.ac.jp

Tilo Wettig
Department of Physics, University of Regensburg, 93040 Regensburg, Germany
E-mail: [tilo.wettig@physik.uni-regensburg.de

Naoki Yamamoto
Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
E-mail: lyamamoto@nt.phys.s.u-tokyo.ac.|p

We report on our analytical study of two-color QCD with an even number of flavors at high baryon

density. Based on the pattern of chiral symmetry breaking induced by BCS-type diquark pairing
we construct the low-energy effective Lagrangian for the Nambu-Goldstone bosons. We also
identify a new epsilon-regime at high baryon density and derive Leutwyler-Smilga-type spectral
sum rules for the complex eigenvalues of the Dirac operator in terms of the fermion gap. Our
results can in principle be tested in lattice QCD simulations.

The XXVII International Symposium on Lattice Field Theory - LAT2009
July 26-31 2009
Peking University, Beijing, China

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:tkanazawa@nt.phys.s.u-tokyo.ac.jp�
mailto:tilo.wettig@physik.uni-regensburg.de�
mailto:yamamoto@nt.phys.s.u-tokyo.ac.jp�

Chiral Lagrangian and spectral sum rules for two-color QCD at high density Takuya Kanazawa

1. Introduction

Understanding the phase structure of Quantum Chromodynamics (QCD) at nonzero tempera-
ture (T) and quark chemical potentigh) is an important subject relevant to many areas of physics,
including relativistic heavy ion collisions, the early universe, and the interior of neutron®tafs [
Although QCD atT > 0 andu = 0 has been extensively investigated by both analytical methods
and first-principle lattice simulations, QCD at=# 0 is much less understood, as the fermion sign
problem makes Monte Carlo simulations extremely difficult. One exception is QCD in the high-
density limit (u > Agcp) where the QCD coupling is weak: A color superconductor called color-
flavor locked (CFL) phase was shown to be realiZjdr{ which color and flavor symmetries lock
each other and chiral symmetry is spontaneously broken.

At u = 0 an intimate relation has been established between the spectral properties of the
Dirac operator and the spontaneous breaking of chiral symmetry. In 1992 Leutwyler and Smilga
[4] succeeded in deriving details of the Dirac eigenvalue distribution from the low-energy effective
theory of QCD in a finite volume (the-regime) and found that the distribution of Dirac eigenvalues
near zero is governed by the nonvanishing chiral condensate. Soon after their work, Verbaarschot
et al. discovered that chiral random matrix theory (ChRMT), which possesses the same global
symmetries as QCD, provides rich information on spectral correlations of the Dirac op&r&ior [
leading to the realization that the way in which the thermodynamic limit of the spectral density near
zero is approached is universal. This feature enables us to determine the magnitude of the chiral
condensate in the QCD vacuum with considerable accuracy by matching the numerical results from
lattice QCD simulations against the exact analytical results obtained in ChRRMIT the past few
years considerable progress has also been made in ChRM#F & (see B] for a review), but the
high-density regiont > Aqcp is largely unexplored so far.

Recently two of us pointed out a nesvregime specific for the BCS-state of QCD at high
density, where exact analytical results, including Leutwyler-Smilga-type spectral sum rules char-
acterized by the fermion gak, can be derivedd]. This explicitly shows that the Dirac spectrum
at high density is governed by the BCS gap but not by the chiral condensate. In this report we
apply these lines of analysis to two-color QCD with an even number of flavors. Our principal
motivation comes from the fact that two-color QCD can be simulated on the lattice eues at
Although this property makes the theory a very attractive testing ground for methods and concepts
developed in the studies of three-color dense quark matter, the related works have focused on the
Bose-Einstein condensate of the diquarks (see, d&€]). [On the other hand, in this report we
will concentrate on the BCS superfluid, which is the genuine two-color counterpart of the color
superconductivity (e.g., CFL phase) in the three-color case. Testing our results on the lattice will
provide the first signature of BCS pairing as well as determine the value of the gap.

2. Low-energy effective theory

Let us first construct the low-energy effective theory for dense two-color QAp YWe first
define our notation. The fermionic part of the Lagrangian in Euclidean space ggadq.) +
A )Y with the u-dependent Dirac operator

2(1) = WDy +you (2.1)
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and the mass term 1 1
:///:5(1+yg)|\/|+§(1—y5)|v|*. (2.2)

Here, Y is a short-hand notation fa¥; flavors of two-color Dirac spinor fields transforming in
the fundamental representation of @o0. The ), are hermitiany-matrices. The covariant
derivativeD,, is an anti-hermitian operator so that the eigenvalueg, Df, are purely imaginary.
M is theN; x N¢ quark mass matrix. FOM = 0 andu = 0, the fermionic part of the Lagrangian is
symmetric under (2N ). For i # 0, this symmetry is broken explicitly to SMs ). x SU(Nf)r x
U(1)g x U(1)a. A remarkable property of two-color QCD is that the fermion sign problem is
absent at nonzerp: Because of the pseudo-reality of &) we haveZ (u)1.Cys = 12Cy 2 (U)*,
whereC is the charge conjugation operator amds a generator of S(2)¢.1or- Together with chiral
symmetry{ys, Z(u)} =0, it follows that if A is one of the eigenvalues &f(u), so are—A, A*,
and—A*. Consequently, the fermion determinant is real and non-negative in two-color QCD with
an even number of flavors with pairwise degenerate quark masses.

At 1> Aqcp, perturbative one-gluon exchange indicates that the color antisymmetric channel
1 (coming from2® 2 = 3@ 1) is attractive, which implies that the Fermi surface becomes unstable
and subject to the formation of Cooper pairs, as known in the BCS theory. As a result a gap
A appears in the spectrum of quasiquarks near the Fermi surface. The Pauli principle forces the
condensation to occur in the flavor-antisymmetric channel:

0 (W) = (ean(Wl)Cysl gy, (2.3)

wherea,b € {1,2} andi, ] € {1,...,N¢} are color and flavor indices, respectively. THex Nt
symplectic matrix is defined as
0-1
| = 2.4
2 o

wherelis the(Nf/2) x (Nf/2) unit matrix. Hereafter we always assume tNatis even.

Some comments are in order. Although the diquark pairh§ fas the same quantum num-
bers as that inllQ], their physical meanings are different: The pairi2gy is a weakly-coupled
BCS-type condensate whereas thaiif] [is a strongly-coupled Bose-Einstein condensate (BEC),
and there could be a smooth crossover between the two. The crossover from low to high densities,
if realized, is a typical BEC-BCS crossover known in condensed matter physics. It parallels the
idea of quark-hadron continuitlL?] in real (three-color) QCD, which may be explicitly realized by
the effect of the axial anomalgd8]. However, for two-color QCD with eveNs, the axial anomaly
never acts as an external field for the chiral condensate, and a new mechanism is necessary to
account for the crossover phenomenon.

The condensatior2(3) breaks chiral symmetry spontaneously as follows:

SU(Nf)L X SU(Nf)R X U(l)B X U(l)A — Squ)L X S[XNf)R. (25)

We used the fact that the(W)a-anomaly is suppressed at high density. It is a characteristic of
two-color QCD that Cooper pairs are color singlets and preserve gauge symmetry; the system is
in the superfluid phase but not in the superconducting phase. We stresaFhi different from

the way chiral symmetry is spontaneously brokep at 0 [10]: SU(2N¢) — Sp(2N¢). (Thus the
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resulting effective chiral Lagrangian is entirely different as well.) The Nambu-Goldstone (NG)
fields associated witl2(5) are gapless in the chiral limit and govern the low-energy physics near
the Fermi surface. Let us label the NG modes as

ZL € SU(Nf)L/Sp(Nf)L, Zr € SU(Nf)r/Sp(Nf)r, V €U(l)s, AcU(l)a.  (2.6)

For Ny = 2, ¥ r do not exist since S(2) ~ Sp(2). First consideN; > 4. In the presence of
explicit breaking of chiral symmetry by#, the above NG modes acquire a small but nonzero
mass. From symmetry arguments plus weak-coupling calculations, the effective chiral Lagrangian
valid at energy scales belais determined to be

f 2 2 for?’ 2 2
2 = S0V P =RV} + " {|00A2 2 |aA |

gy { 100502 — V2|3 ZL 2+ (L R)} - 3A2{A2Tr(MZRMTZT) + c.c.} . @7

2 m 41 L
The f’s are decay constants for each NG mode, and/thare the corresponding velocities origi-
nating from the absence of Lorentz invariance in the medium. The absenc©d¥grterm in the
chiral Lagrangian is a consequence of #{&), x Z(2)r symmetry of the diquark pairing.

ForN¢ = 2, a similar analysis leads to

fﬁ 2 2 2 2 2 3A2 2
327{|aow —VE[aV2} + 12 {100 2 A }—ﬁ{(detM)A +ec).  (28)

AsV and the gluon fields decouple from the other NG modes, they will be neglected in the follow-
ing. We note that the chiral Lagrangian at laygeresented above is a new result. The Lagrangian
in [10Q] is valid only for densities corresponding tp< m,, wherem, is thep-meson mass.

3. Patrtition function in a finite volume

Next we show that the-regime introduced ait = 0 in [14] can be defined at largg as
well. Let us take the imaginary-time formalism and consider two-color QCD in a finite box of size
L% (= V4). The masses of the NG modes due to the quark mass nvatiice denoted bynyg. The
point is that the dynamics of the system simplifies drastically in the regime

1 1

A <L« G (3.1)
The first inequality guarantees that contributions of non-NG modes (e.g., quarks) to the partition
function Z are sufficiently small:e™*2 < 1. The second inequality implies that the Compton
wavelength of the NG modes is much larger than the linear extent of the box, which allows us
to truncate the Hilbert space of the NG modes to its zero-momentum sector alone. Therefore the
partition function in thes-regime [8.1) is given simply by

2
Z(M) = /dA /olzL /dZR exp[V;ljiz{AzTr(MZRMTZD+c.c.}}, (3.2)
U(1)a  SUNf)L/SPINf)L  SU(Ni)r/SP(Nt)R
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normalized so thaZ(0) = 1. The infinite-dimensional path integral is now reduced to ordinary
integrals. For degenerate masdds=£ ml), the integration can be carried out explicitly, yielding

1
(Nf — )11

whereA is anN; x N¢ antisymmetric matrix with entries

Z(m) = Pf(A), (3.3)

3 N —1 Nf—3 Nf—1
quE(q_p)lp-i'q <7_[2V4A2rnz>7 p7q:_ f2 IERAR] f2 ) f2 (34)

andl,q denotes a modified Bessel function. Itis intriguing tha (3.3) bears strong resemblance
to the known expression for the finite-volume partition functiop at 0 in the topologically trivial
sector 15, (5.13)]. The latter is obtained by changiNg and (3/7%)V4A%n? in (3.3) and B.4) to
2N andV4Zm, respectively, witlk the magnitude of the chiral condensate. It would be interesting
to generalize our results to intermediate densities, interpolating between both results.

For Ns = 2, explicit integration is possible for arbitrah, with the result

Z(M) =g <32V4A2detM) . (3.5)

4. Spectral sum rules for the Dirac operator

In this section we review the derivation of spectral sum rules and briefly discuss their physical
implications. Let us denote the complex eigenvalues of the Dirac operdjoy by iA,, where the
An are real foru = 0. Starting from the microscopic Lagrangian of QCD instead of the effective
chiral Lagrangian, one may write the normalized partition function as

Z(M):/[@A} I "de(A\2+M™M) e //@A N 22) Ve 4.1)

— <rn|’det<1+ MATHZM>>, (4.2)

where§; = / d*x FiyF2 /4 and(---) represents expectation values with respect to the measure in

the chiral limit. [, (and latery ;) denotes the product (sum) over all eigenvalues wigi, > 0.

We neglect the anomaly which is suppressed at largend thus we assume that no zero modes
appear. Equating(2) with (3.2) for Ny > 4 and matching the coefficients @ M?) andO(M*%),

we arrive at novel spectral sum rules,

) () = (Fap) =0 (D)=t 09

The vanishing of many of the spectral sums is a salient feature of the high-density limit by which

(4.3 is distinguished most clearly from the conventional spectral sum rulgs=a0 [4, 15]. We

add that matching betwee#.?) and 3.5) for Ny = 2 reveals that4.3) is correct folNs = 2 as well.
Introducing the spectral densip(A ) and the microscopic spectral densityfA ) defined by

Tz

pd) = <Z 50 /\n)> and - ps(z) = fim BVZZAZ p(\/3V4A2) ’ (#4)
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the second sum rule i#(J) is rewritten as

Ps(2) 1
d?z = AN — 12 (4.5)
Rez>0
In analogy with theu = O case, this formula strongly suggests tpatz) is a universal function
determined by the global symmetries of the problem. It leads to the observation that the smallest
eigenvalues of7 sit at the scale 0oD(1/1/V,) and that their distribution is governed @y in
contrast to the situation at = 0 where the magnitude of the smallest eigenvalu&3(is/Vs) and
the quantity relevant for level correlations is dgtbut Z.
Finally we comment on the generalization of the sum rufe8) (to the massive case. It is
achieved by rescaling both the eigenvalues and the masses simultaneously as the volume is taken to
infinity. We begin with the simplest case, i.Bl;, = 2 with massesm andnp. In terms of rescaled

dimensionless variables,

) m n )

V/ V42 V/ V42
= A M : (4.6)
T
the simplest sum rule reads

<<Z,Z%jm§>> _ rzé IO(XI)OZXI)Z(X) with  x =y, (4.7)

where((---)) represents expectation values with respect to the massive measure. FaN jatfuger
explicit expressions become increasingly involved. Rpe 4 with equal masses, we have

i1\ _ 2loW)la(y) —3li(y)l2(y) +12(y)la(y) N
(3zm) =" a@oyr e sy M Y= @9

Similarly we can generalizgs in (4.4) to the double-microscopic spectral density defined by

péNf)(z;ml ., y) = lim P e
) ’ f Vj—0 3V4A2 /3\/4A2

in terms of which we can rewrite, e.04.7) in the form

 eE (4.9)

iy =m ~Y——-— fixed

/dzz P (@i, M) _ M lo(x) —l2(x) (4.10)
2+ 4 lo(x)
Rez>0

As emphasized in the introduction, it has been firmly established=ad by various arguments
[6] that the functiongos andps(Nf) are universal in the sense that they depend solely on the pattern
of spontaneous symmetry breaking and not on the detailed form of the microscopic interactions.
Hence we expect that the same holds at larges well, even though the explicit forms pf and
ps(Nf) defined in 4.4) and @.9) are still unknown. A promising approach will be to construct an
appropriate ChRMT that corresponds to dense two-color QCD (work in progress). In this regard
one might be tempted to consider a minimal modification of the conventional ChRMTs by addition
of aypu-term, but this does not suffice, since in the lapglmit the latter will dominate the Dirac

operator completely and render its dynamics trivial.
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5. Summary

We have constructed the low-energy effective Lagrangian for dense two-color QCD with an
even number of flavors at large quark chemical poteptisdsed on the symmetry breaking pattern
induced by the formation of a diquark condensdt#].[ Also, we have identified a new finite-
volumee-regime for the superfluid phase at laggeln this regime, we can exactly determine the
guark mass dependence of the partition function from the effective theory. Matching this result
against the two-color QCD partition function, we have derived novel spectral sum rules for inverse
powers of the complex eigenvalues of the Dirac operator. Our sum rules explicitly show that the
Dirac spectrum at largg is governed by the fermion gag unlike the spectrum at low, which
is governed by the chiral condensate as showdsh [

Since the fermion sign problem is absent in this theory, our sum rules can in principle be
checked in lattice QCD simulations. This is in contrast to real (three-color) QCD where the severe
sign problem prevents us from observing the presumed color superconductivity, although similar
spectral sum rules could be derived in the corresponeirggime B]. Testing our sum rules for
two colors on the lattice would enable us to measure the value of the BCS afdprgeu for the
first time, since previous studies of two-color QCD at nonzelwave only been able to determine
the magnitude of the diquark condensate, not the gap itself.

It would be interesting to obtain an analogue of the Banks-Casher relation aplange the
concrete form of the microscopic spectral density inghregime we identified. In particular, it is
a challenging problem to construct the corresponding random matrix model, which has turned out
to be very successful at = 0 and smallu, to reproduce our spectral sum rules and to elucidate
universal properties of the Dirac spectrum at laggéor both two and three colors. A detailed
analysis of these issues is deferred to future work.
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