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1. Introduction

Understanding the phase structure of Quantum Chromodynamics (QCD) at nonzero tempera-
ture (T) and quark chemical potential (µ) is an important subject relevant to many areas of physics,
including relativistic heavy ion collisions, the early universe, and the interior of neutron stars [1, 2].
Although QCD atT > 0 andµ = 0 has been extensively investigated by both analytical methods
and first-principle lattice simulations, QCD atµ 6= 0 is much less understood, as the fermion sign
problem makes Monte Carlo simulations extremely difficult. One exception is QCD in the high-
density limit (µ � ΛQCD) where the QCD coupling is weak: A color superconductor called color-
flavor locked (CFL) phase was shown to be realized [3] in which color and flavor symmetries lock
each other and chiral symmetry is spontaneously broken.

At µ = 0 an intimate relation has been established between the spectral properties of the
Dirac operator and the spontaneous breaking of chiral symmetry. In 1992 Leutwyler and Smilga
[4] succeeded in deriving details of the Dirac eigenvalue distribution from the low-energy effective
theory of QCD in a finite volume (theε-regime) and found that the distribution of Dirac eigenvalues
near zero is governed by the nonvanishing chiral condensate. Soon after their work, Verbaarschot
et al. discovered that chiral random matrix theory (ChRMT), which possesses the same global
symmetries as QCD, provides rich information on spectral correlations of the Dirac operator [5, 6],
leading to the realization that the way in which the thermodynamic limit of the spectral density near
zero is approached is universal. This feature enables us to determine the magnitude of the chiral
condensate in the QCD vacuum with considerable accuracy by matching the numerical results from
lattice QCD simulations against the exact analytical results obtained in ChRMT [7]. In the past few
years considerable progress has also been made in ChRMT atµ 6= 0 (see [8] for a review), but the
high-density regionµ � ΛQCD is largely unexplored so far.

Recently two of us pointed out a newε-regime specific for the BCS-state of QCD at high
density, where exact analytical results, including Leutwyler-Smilga-type spectral sum rules char-
acterized by the fermion gap∆, can be derived [9]. This explicitly shows that the Dirac spectrum
at high density is governed by the BCS gap but not by the chiral condensate. In this report we
apply these lines of analysis to two-color QCD with an even number of flavors. Our principal
motivation comes from the fact that two-color QCD can be simulated on the lattice even atµ 6= 0.
Although this property makes the theory a very attractive testing ground for methods and concepts
developed in the studies of three-color dense quark matter, the related works have focused on the
Bose-Einstein condensate of the diquarks (see, e.g., [10]). On the other hand, in this report we
will concentrate on the BCS superfluid, which is the genuine two-color counterpart of the color
superconductivity (e.g., CFL phase) in the three-color case. Testing our results on the lattice will
provide the first signature of BCS pairing as well as determine the value of the gap.

2. Low-energy effective theory

Let us first construct the low-energy effective theory for dense two-color QCD [11]. We first
define our notation. The fermionic part of the Lagrangian in Euclidean space readsψ(D(µ) +
M )ψ with theµ-dependent Dirac operator

D(µ) = γνDν + γ0µ (2.1)

2



P
o
S
(
L
A
T
2
0
0
9
)
1
9
5

Chiral Lagrangian and spectral sum rules for two-color QCD at high density Takuya Kanazawa

and the mass term
M =

1
2

(1+ γ5)M +
1
2

(1− γ5)M† . (2.2)

Here,ψ is a short-hand notation forNf flavors of two-color Dirac spinor fields transforming in
the fundamental representation of SU(2)color. The γν are hermitianγ-matrices. The covariant
derivativeDν is an anti-hermitian operator so that the eigenvalues ofγνDν are purely imaginary.
M is theNf ×Nf quark mass matrix. ForM = 0 andµ = 0, the fermionic part of the Lagrangian is
symmetric under U(2Nf ). Forµ 6= 0, this symmetry is broken explicitly to SU(Nf )L×SU(Nf )R×
U(1)B×U(1)A. A remarkable property of two-color QCD is that the fermion sign problem is
absent at nonzeroµ: Because of the pseudo-reality of SU(2) we haveD(µ)τ2Cγ5 = τ2Cγ5D(µ)∗,
whereC is the charge conjugation operator andτ2 is a generator of SU(2)color. Together with chiral
symmetry,{γ5,D(µ)} = 0, it follows that if λ is one of the eigenvalues ofD(µ), so are−λ , λ ∗,
and−λ ∗. Consequently, the fermion determinant is real and non-negative in two-color QCD with
an even number of flavors with pairwise degenerate quark masses.

At µ�ΛQCD, perturbative one-gluon exchange indicates that the color antisymmetric channel
1 (coming from2⊗2 = 3⊕1) is attractive, which implies that the Fermi surface becomes unstable
and subject to the formation of Cooper pairs, as known in the BCS theory. As a result a gap
∆ appears in the spectrum of quasiquarks near the Fermi surface. The Pauli principle forces the
condensation to occur in the flavor-antisymmetric channel:

0 6= 〈ψψ〉 ≡ 〈εab(ψT
a )iCγ5I i j ψ j

b〉 , (2.3)

wherea,b ∈ {1,2} and i, j ∈ {1, . . . ,Nf } are color and flavor indices, respectively. TheNf ×Nf

symplectic matrixI is defined as

I =

(
0 −1
1 0

)
, (2.4)

where1 is the(Nf /2)× (Nf /2) unit matrix. Hereafter we always assume thatNf is even.
Some comments are in order. Although the diquark pairing (2.3) has the same quantum num-

bers as that in [10], their physical meanings are different: The pairing (2.3) is a weakly-coupled
BCS-type condensate whereas that in [10] is a strongly-coupled Bose-Einstein condensate (BEC),
and there could be a smooth crossover between the two. The crossover from low to high densities,
if realized, is a typical BEC-BCS crossover known in condensed matter physics. It parallels the
idea of quark-hadron continuity [12] in real (three-color) QCD, which may be explicitly realized by
the effect of the axial anomaly [13]. However, for two-color QCD with evenNf , the axial anomaly
never acts as an external field for the chiral condensate, and a new mechanism is necessary to
account for the crossover phenomenon.

The condensation (2.3) breaks chiral symmetry spontaneously as follows:

SU(Nf )L×SU(Nf )R×U(1)B×U(1)A→ Sp(Nf )L×Sp(Nf )R. (2.5)

We used the fact that the U(1)A-anomaly is suppressed at high density. It is a characteristic of
two-color QCD that Cooper pairs are color singlets and preserve gauge symmetry; the system is
in the superfluid phase but not in the superconducting phase. We stress that (2.5) is different from
the way chiral symmetry is spontaneously broken atµ = 0 [10]: SU(2Nf )→ Sp(2Nf ). (Thus the
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resulting effective chiral Lagrangian is entirely different as well.) The Nambu-Goldstone (NG)
fields associated with (2.5) are gapless in the chiral limit and govern the low-energy physics near
the Fermi surface. Let us label the NG modes as

ΣL ∈ SU(Nf )L/Sp(Nf )L , ΣR∈ SU(Nf )R/Sp(Nf )R, V ∈ U(1)B , A∈ U(1)A . (2.6)

For Nf = 2, ΣL,R do not exist since SU(2) ' Sp(2). First considerNf ≥ 4. In the presence of
explicit breaking of chiral symmetry byM , the above NG modes acquire a small but nonzero
mass. From symmetry arguments plus weak-coupling calculations, the effective chiral Lagrangian
valid at energy scales below∆ is determined to be

L =
f 2
H

2

{
|∂0V|2−v2

H |∂iV|2
}

+
Nf f 2

η ′

2

{
|∂0A|2−v2

η ′ |∂iA|2
}

+
f 2
π
2

Tr
{
|∂0ΣL|2−v2

π |∂iΣL|2 +(L↔ R)
}
− 3∆2

4π2

{
A2Tr(MΣRMTΣ†

L)+c.c.
}
. (2.7)

The f ’s are decay constants for each NG mode, and thev’s are the corresponding velocities origi-
nating from the absence of Lorentz invariance in the medium. The absence of anO(M) term in the
chiral Lagrangian is a consequence of theZ(2)L×Z(2)R symmetry of the diquark pairing.

ForNf = 2, a similar analysis leads to

L =
f 2
H

2

{
|∂0V|2−v2

H |∂iV|2
}

+ f 2
η ′
{
|∂0A|2−v2

η ′ |∂iA|2
}
− 3∆2

2π2

{
(detM)A2 +c.c.

}
. (2.8)

AsV and the gluon fields decouple from the other NG modes, they will be neglected in the follow-
ing. We note that the chiral Lagrangian at largeµ presented above is a new result. The Lagrangian
in [10] is valid only for densities corresponding toµ <mρ , wheremρ is theρ-meson mass.

3. Partition function in a finite volume

Next we show that theε-regime introduced atµ = 0 in [14] can be defined at largeµ as
well. Let us take the imaginary-time formalism and consider two-color QCD in a finite box of size
L4(≡V4). The masses of the NG modes due to the quark mass matrixM are denoted bymNG. The
point is that the dynamics of the system simplifies drastically in the regime

1
∆
� L� 1

mNG
. (3.1)

The first inequality guarantees that contributions of non-NG modes (e.g., quarks) to the partition
function Z are sufficiently small:e−L∆ � 1. The second inequality implies that the Compton
wavelength of the NG modes is much larger than the linear extent of the box, which allows us
to truncate the Hilbert space of the NG modes to its zero-momentum sector alone. Therefore the
partition function in theε-regime (3.1) is given simply by

Z(M) =
∫

U(1)A

dA
∫

SU(Nf )L/Sp(Nf )L

dΣL

∫

SU(Nf )R/Sp(Nf )R

dΣR exp

[
V4

3∆2

4π2

{
A2Tr(MΣRMTΣ†

L)+c.c.
}]

, (3.2)
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normalized so thatZ(0) = 1. The infinite-dimensional path integral is now reduced to ordinary
integrals. For degenerate masses (M = m1), the integration can be carried out explicitly, yielding

Z(m) =
1

(Nf −1)!!
Pf(A) , (3.3)

whereA is anNf ×Nf antisymmetric matrix with entries

Apq≡ (q− p)Ip+q

(
3

π2V4∆2m2
)
, p,q =−Nf −1

2
, . . . ,

Nf −3
2

,
Nf −1

2
(3.4)

andIp+q denotes a modified Bessel function. It is intriguing thatZ in (3.3) bears strong resemblance
to the known expression for the finite-volume partition function atµ = 0 in the topologically trivial
sector [15, (5.13)]. The latter is obtained by changingNf and(3/π2)V4∆2m2 in (3.3) and (3.4) to
2Nf andV4Σm, respectively, withΣ the magnitude of the chiral condensate. It would be interesting
to generalize our results to intermediate densities, interpolating between both results.

ForNf = 2, explicit integration is possible for arbitraryM, with the result

Z(M) = I0

(
3

π2V4∆2detM

)
. (3.5)

4. Spectral sum rules for the Dirac operator

In this section we review the derivation of spectral sum rules and briefly discuss their physical
implications. Let us denote the complex eigenvalues of the Dirac operatorD(µ) by iλn, where the
λn are real forµ = 0. Starting from the microscopic Lagrangian of QCD instead of the effective
chiral Lagrangian, one may write the normalized partition function as

Z(M) =
∫

[DA] ∏
n

′
det(λ 2

n +M†M) e−Sg

/∫
[DA]

(
∏

n

′λ 2
n

)Nf
e−Sg (4.1)

=
〈

∏
n

′
det

(
1+

M†M
λ 2

n

)〉
, (4.2)

whereSg≡
∫

d4xFa
µνFa

µν/4 and〈· · · 〉 represents expectation values with respect to the measure in

the chiral limit. ∏′n (and later∑′n) denotes the product (sum) over all eigenvalues withReλn > 0.
We neglect the anomaly which is suppressed at largeµ, and thus we assume that no zero modes
appear. Equating (4.2) with (3.2) for Nf ≥ 4 and matching the coefficients atO(M2) andO(M4),
we arrive at novel spectral sum rules,
〈

∑
n

′ 1
λ 2

n

〉
=
〈

∑
m<n

′ 1
λ 2

mλ 2
n

〉
=
〈

∑
n

′ 1
λ 6

n

〉
= 0,

〈
∑
n

′ 1
λ 4

n

〉
=

9
4π4(Nf −1)2(V4∆2)2 . (4.3)

The vanishing of many of the spectral sums is a salient feature of the high-density limit by which
(4.3) is distinguished most clearly from the conventional spectral sum rules atµ = 0 [4, 15]. We
add that matching between (4.2) and (3.5) for Nf = 2 reveals that (4.3) is correct forNf = 2 as well.

Introducing the spectral densityρ(λ ) and the microscopic spectral densityρs(λ ) defined by

ρ(λ )≡
〈

∑
n

δ 2(λ −λn)
〉

and ρs(z)≡ lim
V4→∞

π2

3V4∆2 ρ
(

πz√
3V4∆2

)
, (4.4)
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the second sum rule in (4.3) is rewritten as
∫

Rez>0

d2z
ρs(z)

z4 =
1

4(Nf −1)2 . (4.5)

In analogy with theµ = 0 case, this formula strongly suggests thatρs(z) is a universal function
determined by the global symmetries of the problem. It leads to the observation that the smallest
eigenvalues ofD sit at the scale ofO(1/

√
V4) and that their distribution is governed by∆, in

contrast to the situation atµ = 0 where the magnitude of the smallest eigenvalues isO(1/V4) and
the quantity relevant for level correlations is not∆, butΣ.

Finally we comment on the generalization of the sum rules (4.3) to the massive case. It is
achieved by rescaling both the eigenvalues and the masses simultaneously as the volume is taken to
infinity. We begin with the simplest case, i.e.,Nf = 2 with massesm1 andm2. In terms of rescaled
dimensionless variables,

zn≡ λn

√
3V4∆2

π
, m̃i ≡mi

√
3V4∆2

π
, (4.6)

the simplest sum rule reads

〈〈
∑
n

′ 1

z2
n + m̃2

1

〉〉
=

m̃2
2

4
I0(x)− I2(x)

I0(x)
with x = m̃1m̃2 , (4.7)

where〈〈· · · 〉〉 represents expectation values with respect to the massive measure. For largerNf the
explicit expressions become increasingly involved. ForNf = 4 with equal masses, we have

〈〈
∑
n

′ 1
z2
n + m̃2

〉〉
=

2I0(y)I1(y)−3I1(y)I2(y)+ I2(y)I3(y)
4(3I0(y)2−4I1(y)2 +3I2(y)2)

with y = m̃2 . (4.8)

Similarly we can generalizeρs in (4.4) to the double-microscopic spectral density defined by

ρ(Nf )
s (z;m̃1, . . . ,m̃Nf )≡ lim

V4→∞

π2

3V4∆2 ρ
(

πz√
3V4∆2

)∣∣∣∣
m̃i=mi

√
3V4∆2

π fixed
, (4.9)

in terms of which we can rewrite, e.g., (4.7) in the form

∫

Rez>0

d2z
ρ(2)

s (z;m̃1,m̃2)
z2 + m̃2

1

=
m̃2

2

4
I0(x)− I2(x)

I0(x)
. (4.10)

As emphasized in the introduction, it has been firmly established atµ = 0by various arguments
[6] that the functionsρs andρ(Nf )

s are universal in the sense that they depend solely on the pattern
of spontaneous symmetry breaking and not on the detailed form of the microscopic interactions.
Hence we expect that the same holds at largeµ as well, even though the explicit forms ofρs and
ρ(Nf )

s defined in (4.4) and (4.9) are still unknown. A promising approach will be to construct an
appropriate ChRMT that corresponds to dense two-color QCD (work in progress). In this regard
one might be tempted to consider a minimal modification of the conventional ChRMTs by addition
of a γ0µ-term, but this does not suffice, since in the large-µ limit the latter will dominate the Dirac
operator completely and render its dynamics trivial.
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5. Summary

We have constructed the low-energy effective Lagrangian for dense two-color QCD with an
even number of flavors at large quark chemical potentialµ based on the symmetry breaking pattern
induced by the formation of a diquark condensate [11]. Also, we have identified a new finite-
volumeε-regime for the superfluid phase at largeµ. In this regime, we can exactly determine the
quark mass dependence of the partition function from the effective theory. Matching this result
against the two-color QCD partition function, we have derived novel spectral sum rules for inverse
powers of the complex eigenvalues of the Dirac operator. Our sum rules explicitly show that the
Dirac spectrum at largeµ is governed by the fermion gap∆, unlike the spectrum at lowµ, which
is governed by the chiral condensate as shown in [15].

Since the fermion sign problem is absent in this theory, our sum rules can in principle be
checked in lattice QCD simulations. This is in contrast to real (three-color) QCD where the severe
sign problem prevents us from observing the presumed color superconductivity, although similar
spectral sum rules could be derived in the correspondingε-regime [9]. Testing our sum rules for
two colors on the lattice would enable us to measure the value of the BCS gap∆ at largeµ for the
first time, since previous studies of two-color QCD at nonzeroµ have only been able to determine
the magnitude of the diquark condensate, not the gap itself.

It would be interesting to obtain an analogue of the Banks-Casher relation at largeµ and the
concrete form of the microscopic spectral density in theε-regime we identified. In particular, it is
a challenging problem to construct the corresponding random matrix model, which has turned out
to be very successful atµ = 0 and smallµ, to reproduce our spectral sum rules and to elucidate
universal properties of the Dirac spectrum at largeµ for both two and three colors. A detailed
analysis of these issues is deferred to future work.
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