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1. Introduction

Finite Size Scaling (FSS) provides a powerful tool whichdsdito extrapolate information to
infinite volume. It can also be used to study the critical lvéivaand calculate critical exponents.
When the system is close to a 2nd order phase transition, kmrgedistance properties can be
determined by the global features of the system, such asythenstries and the dimensionality.
Universality enables us to classify seemingly differerdtegns into certain classes. Svetitsky and
Yaffe [1] pointed out that, fod + 1 dimensionalSU(N) pure gauge model, “if any portion of the
boundary is second-order, then the critical behavior walldescribed by some fixed point df
dimensional Z(N) invariant spin systems.” For a pure gauglg(2) theory in 3+1 dimension, we
expect the universality class of the finite temperaturesitim to be the same as the 3 dimensional
Ising model. Existing results on FSS 8U(2) [2, 3, 4, 5, 6] agree well with this expectation.

In the following, we work orSU(2) gauge theory in 3+1 dimensions; x N3, whereN; = 4,
andNg; =2,4,6,8, - -- 16, with periodic boundary conditions. We focus on diretinestions of the
exponentsy andw. For N; = 4, the only direct estimate of we are aware is.85(4) obtained
in Ref. [2], which is compatible with the accurate valuéZB85) obtained in Ref. [7] for the
3-dimensional Ising model. We would like: 1) to improve tlegaracy of the estimate of Ref. [2]
and 2) resolve the corrections due to the irrelevant doasti Part 2) is largely unexplored and
a better understanding of these corrections could help sigrienethods to reduce these effects
as done in Ref. [7] for the 3 dimensional Ising model. In thistixg work for N; = 4 in Refs.

[2, 3, 6], a fixedB interval procedure was used. This means fhiaterval is fixed for different
volumes. In these proceedings, we shrink the interval iriotd reduce the nonlinear effects [9]
and use a fineB resolution.

2. Binder cumulants and FSS

In the following, we define the 4th order Binder cumulant (], as

(P 1 1. N
B=1-—=, P=_—S_Tr[|U.x (2.1)
3(P2)2 Nggz Dl X0
(P

Related definitions appear in the literature, sucBas 2 We assume that there is no external
field and that they, depends on the scaling variables as

0 = ga(UeNYY uN @, ) (2.2)
with

U = K +uPk2 ...

u = u” +uPk 4.

whereuy is the only relevant scaling variable is the first irrelevant scaling variable, ards the
reduced quantitx = (3 — B:)/Bc. Expanding up to the first nonlinear corrections, we obtain

94(B8.No) = 0a(Be, ) + FikNYY + f262NZY + (Co + ik NY VING @+ - -- (2.3)



Finite Size Scaling and Universality in SU(2) at Finite Teargiure Yuzhi Liu

This expansion is accurate \W!NQ—/" is small enough. In addition we would like the nonlinear
effects off, andc; to be negligible. It is easy to estimatg from numerical data for intermediate
values ofk [9] . However,c; is more difficult to resolve from an already small effect atsdeffect
will be ignored. In the following, we will work with values C}k|Né/V such that the effects db
are within the numerical errors gf; that we now proceed to discuss.

3. Error Analysis

For each volume, we worked on the region nBafwe discus{3; later). We generated 50,000
Polyakov loops with 20 different seeds for egthTherefore, for eacf8, we have 1,000,000 values.
However, the data is correlated and we will need to removedthelations. The autocorrelation
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Figure 1. These two graphs show that the autocorrelation time chanigbghe volume. FolNys=4, the
autocorrelation time is around 10. R¥§=16, the autocorrelation time is around 200 illustrating ¢hitical
slowing down.
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Figure2: variation ofP* andP? from the ensemble average of for 10 different seeds .

times change witl3 and the volume. Fig. 1 shows two autocorrelation functiolmsorder to
remove the autocorrelation among the data, we tried thestvapt and jackknife methods. For
the jackknife method, we skipped everydata in order to remove the autocorrelation, wheis
the autocorrelation time. Comparisons with other methodsstimate the errors will be discussed
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elsewhere. We should note here that one should not calciiaterror ofP* and P? first and
then use the error propagation to get the errog,0fThis is simply becausB* andP? are highly
correlated, see Fig. 2. The jackknife method can removedtrelation betweel* andP?.

4. Determination of thecritical exponent v

We now focus on the estimation of If we are reasonably close f&, we can use the linear
form:

94(B,Ng) ~ 9a(Be, ) + CoNg @ + f1kNg¥ (4.1)

This expression contains 6 unknown parametgs§c, ), co, w, f1, B and I/v and we will use

a new strategy to attack this difficult problem [10]. A firstsalovation is that the dependencewon
can be isolated from the other parameters by studying tleadidependence ii. However, one
should keep in mind that the slope of this linear fit depengdiaitly on the choice of the center of
the interval which should be as close as possiblg.tdn order to guarantee that nonlinear effects
are under control, we will considgt intervals of the form

B — (Bc)appl < 0.015x (4/Ng )/ V)ave (4.2)

We will start with reasonable values fg8c)appand(1/v),,,and then show that the effect of their
variations is small. The factor 0.015 has been chosen follpwa procedure described in Ref. [9]
and guarantees an approximate linear relation betwgandf at fixedNg:

Oa = 2, + b, % B (4.3)

This is illustrated in the left side of Fig. 3 f@Bc)app = 2.299, (1/V)4p, = 1.6 andNg = 10. We
see that in the chosen interval the deviation from lineasségm mostly due to statistical errors
rather than a systematic curvature that would be obserwed ifad chosen a broader interval. The
volume dependence of the parameters of the linear fit are

an, ~ 94(Be, ) + CoNy @ — F;NYY (4.4)
b, ~ 1N /B (4.5)

Once we havéy, for differentNy, we can do a log-log fit to determine the inverse critical exqu
1/v. One should note that the slope can be determined indepin@érB; or ga(Bc, ). This is
illustrated in the right side of Fig. 3. From the log-log fitttvN, > 6, we obtain Yv = 1.56(4).
We plan to model and explain the deviations from linearityoat Ng. We need to address the
dependence 0ff3;),,, and (1/V),,, We used the central valyg = 2.2991 from Ref. [6] as
the critical value and changed the center of the inte(f8a)app, between 2.297 and 2.301 and
(1/V)app between 1.4 and 1.8. We calculatetl/Ifor a set of 189 values of( Bc) 5pp (1/V)app)-
The histogram is shown in Figure 4 left. We can see that thaegahppear in a rather large range
between 1.468 and 1.631. The average of this set of resulfis- 1.570 with g = 0.027 which
will be our preliminary result. At the conference, a largatue was found, but with low statistics at
largeNg. In the meantime, we collected more data at la\ge If we choose the center of the data

in a smaller range, namely witlf;) ,,, from 2.298 and 2.300 and the same rangd fgw) we

app app’
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Figure 3: Left: linear fit of g4 nearf for Ng = 10, (Bc)app = 2.299 and(l/v)app: 1.6. We getay, and
bn, from the fit for different volumes. Right: determination gfilfrom the log-log fit discussed in the text.
b ~ f1 x Ncl,/V/Bc. By takingLog]|bn, |] vs. Log[Ng], we can get the slope which is justl We only did
this fit with Ny between 6 and 16. THé,; = 2, and 4 points deviate from the linear approximation.
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Figure4: Left Fig.: (Bc)app changes from 2.297 to 2.30(t/v)app changes from 1.4 to 1.8,/v = 1.570;
o = 0.027. Right Fig.:(Bc)appchanges from 2.298 to 2.30@;/v)appchanges from 1.4 to 1.8 /v = 1.571;
o =0.028.

get a slightly different distribution shown on the righteidf 4, but the average is essentially the
same. It seems thus possible to average @88, ,, and(1/v),,, in order to get a more accurate
value of J/v. For reference, /1V|sing is estimated as 1.5887(85) in Ref. [11] and 1.5878(12) in
Ref. [7] and our preliminary result here is consistent whikse more accurate values. This is
preliminary, we plan to go to largé&, and to determing. independently using the method of Ref.

[6].
5. Determination of the critical exponent w

Unless we determing. and /v very precisely, it is very difficult to subtract the effectstioe
third term of Eq. (4.1). If we can work &, this term is absent:

04(Bc,No) = 9a(Bc, ) + CoNg (5.1)

Consistently with the previous section and the rest of tieedture, we assume the universal value
04(Bc, ) = 0.46575 as found in Ref. [71.og[|gs — da(Bc, ©)|] vS. Log[Ny| should be linear right
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Determ nation of w
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Figure5: For 3,=2.2991, the behavior is approximately linegs:~ g4(f¢, %) + Co x N5 .

at B; and nonlinear for all the othgBs. This is shown in Figure 5. At the same time, the slope
is —w. The result we obtained from this analysisas= 2.030(36). This is very different from
Wsing = 0.812 [11]. It is possible that the coefficient of thNg  is very small and the exponent we
extrapolated is a sub-subleading exponent. For a detailisiion of the subleading corrections,
see Ref. [7]. The most plausible explanation seems thaeigsenent is related to the irrelevant
direction associated with the breaking of rotational syrmnj2] and which is close to 2.

6. Conclusion and per spective

By using methods discussed in Refs. [9, 10], we analyzed 4{theotder Binder cumulant
of pure SU(2) lattice gauge theory and estimated the criigponentv and w. 1/v is in good
agreement with the value for the universality class of tbdsdng model, while the corrections to
scaling seem dominated by anisotropic effects [12].
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