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Two-loop renormalization of fermion bilinear
operators on the lattice
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We compute the renormalization functions on the lattice, intheRI ′ scheme, of local bilinear quark
operatorsψ̄Γψ, whereΓ = 1̂, γ5, γµ , γ5 γµ , γ5 σµ ν . This calculation is carried out to two loops for
the first time. We consider both the flavor non-singlet and singlet operators.
As a prerequisite for the above, we compute the quark field renormalization,ZL,RI ′

ψ , up to two

loops. We also compute the 1-loop renormalization functions for the gluon field,ZL,RI ′

A , ghost

field, ZL,RI ′
c , gauge parameter,ZL,RI ′

α , and coupling constantZL,RI ′
g .

We use the clover action for fermions and the Wilson action for gluons. Our results are given as
an explicit function of the coupling constanta◦ = g2

◦
/16π2, the clover coefficientcSW, and the

number of fermion colors (Nc) and flavors (Nf ), in the renormalized Feynman gauge. All 1-loop
quantities are evaluated in an arbitrary gauge.

Finally, we present our results in theMSscheme, for easier comparison with calculations in the

continuum. We have generalized to fermionic fields in an arbitrary representation. Some special

features of superficially divergent integrals, obtained from the evaluation of two-loop Feynman

diagrams, are presented in detail in Ref. [1].
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1. Introduction

Numerical simulations of QCD, formulated on the lattice, make use of a variety of composite
operators, made out of quark fields. Matrix elements and correlation functions of a whole variety
of such operators, are computed in order to study hadronic properties inthis context. A proper
renormalization of these operators is essential for the extraction of physical results from the lattice.

In this work we study the renormalization function,ZΓ, of fermion bilinearsO = ψ̄Γψ on
the lattice, whereΓ = 1̂, γ5, γµ , γ5 γµ , γ5 σµ ν (σµ ν = 1/2[γµ ,γν ]). We consider both flavor singlet
and nonsinglet operators. We employ the standard Wilson action for gluons and clover-improved
Wilson fermions. The number of quark flavorsNf , the number of colorsNc and the clover coeffi-
cientcSW are kept as free parameters. One necessary ingredient for the renormalization of fermion
bilinears is the 2-loop quark field renormalization,Zψ , calculated in [2]. The one-loop expression
for the renormalization functionZg of the coupling constant is also necessary for expressing the
results in terms of both the bare and the renormalized coupling constant.

Our two-loop calculations have been performed in the bare and in the renormalized Feynman
gauge. For the latter, we need the 1-loop renormalization functionsZα andZA of the gauge param-
eter and gluon field respectively, as well as the one-loop expressions for ZΓ with an arbitrary value
of the gauge parameter.

The main results presented in this work are 2-loop bare Green’s functions(amputated, one-
particle irreducible (1PI)), for the scalar, pseudoscalar, vector, axial vector and tensor operator,
as functions of the lattice spacing,aL , and the external momentumq. In general, one can use
bare Green’s functions to constructZX,Y

O
, the renormalization function for operatorO, computed

within a regularizationX and renormalized in a schemeY. We employ two widely used schemes
to compute the various 2-loop renormalization functions: TheRI′ scheme and theMSscheme.

The present work is the first two-loop computation of the renormalization of fermion bilinears
on the lattice. One-loop computations of the same quantities exist for quite some time now (see,
e.g., [3] and references therein). There have been made several attempts to estimateZO non-
perturbatively; recent results can be found in Refs. [4 – 6]. A seriesof results have also been
obtained using stochastic perturbation theory [7]. A related computation, regarding the fermion
mass renormalizationZm with staggered fermions, can be found in [8].

2. Formulation of the problem

We will make use of the Wilson formulation of the QCD action on the lattice, with the addition
of the clover (SW) term for fermions. In standard notation, it reads:

SL = SG +∑
f

∑
x

(4r +mo)ψ̄ f (x)ψ f (x)

−
1
2 ∑

f
∑
x,µ

[

ψ̄ f (x)
(

r − γµ
)

Ux,x+µ ψ f (x+ µ)+ ψ̄ f (x+ µ)
(

r + γµ
)

Ux+µ,x ψ f (x)

]

(2.1)

−
1
4

cSW ∑
f

∑
x,µ,ν

ψ̄ f (x)σµν F̂µν(x)ψ f (x),
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where :F̂µν ≡
1

8a2 (Qµν −Qνµ) (2.2)

and :Qµν = Ux,x+µ Ux+µ,x+µ+ν Ux+µ+ν,x+ν Ux+ν,x +Ux,x+ν Ux+ν,x+ν−µ Ux+ν−µ,x−µ Ux−µ,x

+ Ux,x−µ Ux−µ,x−µ−ν Ux−µ−ν,x−ν Ux−ν,x +Ux,x−ν Ux−ν,x−ν+µ Ux−ν+µ,x+µ Ux+µ,x (2.3)

SG is the standard pure gluon action, made out of 1×1 plaquettes.r is the Wilson parameter
(set tor = 1 henceforth);f is a flavor index. Powers of the lattice spacingaL have been omitted
and may be directly reinserted by dimensional counting.

The “Lagrangian mass”mo is a free parameter in principle. However, since we will be using
mass independent renormalization schemes, all renormalization functions which we will be cal-
culating, must be evaluated at vanishing renormalized mass, that is, whenmo is set equal to the
critical valuemcr: mo → mcr = m1g2

◦
+O(g4

◦
).

One prerequisite to our programme consists of the renormalization functions,ZA, Zc, Zψ , Zg

andZα , for the gluon, ghost and fermion fields (Aa
µ , ca, ψ), and for the coupling constantg and

gauge parameterα , respectively (for definitions of these quantities, see Ref. [2]); we willalso need
the fermion mass countertermmcr. These quantities are all needed to one loop, except forZψ which
is required to two loops. The value of eachZO depends both on the regularizationX and on the
renormalization schemeY employed, and thus should properly be denoted asZX,Y

O
.

As mentioned before, we employ theRI′ renormalization scheme [9], which is more immediate
for a lattice regularized theory. It is defined by imposing a set of normalizationconditions on matrix
elements at a scalēµ, where (just as in theMSscheme):

µ̄ = µ (4π/eγE)1/2 (2.4)

whereγE is the Euler constant andµ is the scale entering the bare coupling constantg◦ = µε Zgg
when regularizing inD = 4−2ε dimensions.

3. Renormalization of fermion bilinears

The lattice operatorsOΓ = ψ̄ Γψ must, in general, be renormalized in order to have finite
matrix elements. We define renormalized operators by

O
RI′
Γ = ZL,RI′

Γ (aL µ̄)OΓo (3.1)

The renormalization functionsZL,RI′

Γ can be extracted through the corresponding bare 2-point
functionsΣL

Γ(qaL ) (amputated, 1PI) on the lattice, through the employment of theRI′ renormaliza-
tion conditions:

lim
aL→0

[

ZL,RI ′
ψ ZL,RI ′

Γ ΣL
Γ(qaL )

]

q2=µ̄2
= Γtree, (3.2)

whereΣL
Γ(qaL ) is the appropriate bare 1PI 2-point Green’s function on the lattice andΓtree is its

tree-level value. For the vector (V), axial-vector (AV) and tensor (T)operators, we can express the
bare Green’s functions in the following way:

ΣL
V(qaL ) = γµ Σ(1)

V (qaL )+
qµ/q
q2 Σ(2)

V (qaL )
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ΣL
AV(qaL ) = γ5γµ Σ(1)

AV(qaL )+ γ5
qµ/q
q2 Σ(2)

AV(qaL ) (3.3)

ΣL
T(qaL ) = γ5 σµ νΣ(1)

T (qaL )+ γ5
/q(γµqν − γνqµ)

q2 Σ(2)
T (qaL )

Only theΣ(1)
V,AV,T(qaL ) parts are involved in Eq. (3.2). It is worth noting here that terms which break

Lorentz invariance (but are compatible with hypercubic invariance), such asγµ (qµ)2/q2, turn out
to be absent from all bare Green’s functions; thus, the latter have the same Lorentz structure as in
the continuum.

For easier comparison with calculations coming from the continuum, we need to express our
results in theMSscheme. For each renormalization function on the lattice,ZL,RI′

O
, we can construct

its MScounterpart using conversion factors:

CΓ(g,α) ≡
ZL,RI′

Γ

ZL,MS
Γ

=
ZDR,RI′

Γ

ZDR,MS
Γ

(3.4)

These conversion factors are regularization independent; thus they can be calculated more easily
in dimensional (DR), rather than Lattice (L), regularization, (see, e.g., Ref. [10]). Due to the non-
unique generalization ofγ5 to D dimensions, the pseudoscalar and axial-vector bilinear operators
require special attention in theMSscheme.

For a more detailed analysis of the renormalization of fermion bilinears and theirconversion
to theMSscheme, see Refs. [1, 2].

4. Computation and Results

The Feynman diagrams contributing to the bare Green’s functions, at 1- and 2-loop level, are
shown in Figs. 1 and 2, respectively. For flavor singlet bilinears, thereare 4 extra diagrams, shown
in Fig. 3, which contain the operator insertion inside a closed fermion loop. These diagrams give a
nonzero contribution only in the scalar and axial-vector cases.

Figure 1: One-loop diagram contributing toZΓ. A wavy (solid) line represents gluons (fermions). A cross
denotes the Dirac matrices1̂ (scalar),γ5 (pseudoscalar),γµ (vector),γ5γµ (axial vector) andγ5σµν (tensor).

In Figs. 1 to 3, “mirror” diagrams (those in which the direction of the externalfermion line is
reversed) should also be included. In most cases, these coincide trivially with the original diagrams;
even in the remaining cases, they can be seen to give equal contribution, by invariance under charge
conjugation.

The evaluation of all Feynman diagrams leads directly to the corresponding bare Green’s func-
tionsΣL

Γ. These, in turn, can be converted to the corresponding renormalization functionsZL,RI ′

Γ , via
Eq. (3.2). One-loop results forZL,RI′

Γ are presented below in a generic gauge. The errors appearing
in these expressions, result from an extrapolation to infinite lattice.

ZL,RI′

S = 1+
g2
◦

16π2 cF

[

3 ln(a2
L
µ̄2)−α◦−16.9524103(1)
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−7.7379159(3)cSW+1.38038065(4)c2
SW

]

(4.1)

ZL,RI′

P = 1+
g2
◦

16π2 cF

[

3 ln(a2
L
µ̄2)−α◦−26.5954414(1)

+2.248868528(3)cSW−2.03601561(4)c2
SW

]

(4.2)

ZL,RI′

T = 1+
g2
◦

16π2 cF

[

− ln(a2
L
µ̄2)+α◦−17.018079209(7)

+3.91333261(4)cSW+1.972295300(5)c2
SW

]

(4.3)

The corresponding expressions forZL,RI′

V , ZL,RI′

AV can be read off from Eqs. (4.4,4.5) below.

We present belowZL,RI′

V and ZL,RI′

AV to two loops in the renormalized Feynman gauge. The
corresponding plots are exhibited in Figs. 4 and 5, as functions of the clover parameter,cSW.
For a complete set of results, regarding the renormalization functions and renormalized Green’s
functions, both in theRI′ and in theMSscheme, the reader should refer to Refs. [1, 2]. Furthermore,
a calculation regarding the multiplicative mass renormalizationZm, which is directly related to
the flavor singlet scalar operator, can be found in Ref. [2]. The generalization of our results to
an arbitrary representation, as well as a detailed discussion regarding the superficially divergent

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20

Figure 2: Two-loop diagrams contributing toZΓ. Wavy (solid, dotted) lines represent gluons (fermions,
ghosts). A solid box denotes a vertex from the measure part ofthe action; a solid circle is a mass counterterm;
crosses denote the Dirac matrices1̂ (scalar),γ5 (pseudoscalar),γµ (vector),γ5γµ (axial-vector) andγ5σµν
(tensor).

3 41 2

Figure 3: Extra two-loop diagrams contributing toZS,singlet andZAV,singlet. A cross denotes an insertion of a
flavor singlet operator. Wavy (solid) lines represent gluons (fermions).
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integrals, can also be found in these papers.

ZL,RI ′

V = 1 +
g2
◦

16π2 cF

[

−20.617798655(6)+4.745564682(3)cSW+0.543168028(5)c2
SW

]

+
g4
◦

(16π2)2 cF

[

Nf

(

25.610(3)−11.058(1)cSW+33.937(3)c2
SW

−13.5286(6)c3
SW−1.2914(6)c4

SW

)

+cF

(

−539.78(1)−223.57(2)cSW−104.116(5)c2
SW

−32.2623(8)c3
SW+4.5575(3)c4

SW

)

+Nc

(

−51.59(1)+18.543(5)cSW+20.960(6)c2
SW

+2.5121(5)c3
SW+0.1765(1)c4

SW

)]

(4.4)
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Figure 4: ZL,RI ′

V (aL µ̄) = ZL,MS
V (aL µ̄) versuscSW (Nc = 3, µ̄ = 1/aL , β◦ = 6.0). Results up to 2 loops are

shown forNf = 0 (solid line) andNf = 2 (dashed line); one-loop results are plotted with a dotted line.

ZL,RI ′

AV = 1 +
g2
◦

16π2 cF

[

−15.796283066(5)−0.247827627(3)cSW+2.251366176(5)c2
SW

]

+
g4
◦

(16π2)2 cF

[

Nf

(

18.497(3)−1.285(1)cSW+19.071(3)c2
SW

+1.0333(6)c3
SW−6.7549(6)c4

SW

)

+cF

(

−184.01(1)−389.86(1)cSW−166.738(6)c2
SW

+7.894(1)c3
SW+4.3201(3)c4

SW

)

+Nc

(

−21.62(1)−33.652(5)cSW+26.636(6)c2
SW

+10.2186(5)c3
SW+1.4893(1)c4

SW

)]

(4.5)
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Figure 5: ZL,RI ′

AV (aL µ̄) versuscSW (Nc = 3, µ̄ = 1/aL , β◦ = 6.0). Results up to 2 loops, for the flavor
nonsinglet operator, are shown forNf = 0, 2 (solid line, dashed line); 2-loop results for the flavor singlet
operator, forNf = 2, are plotted with a dash-dotted line; one-loop results areplotted with a dotted line.
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