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We compute the renormalization functions on the latticéh@RI’ scheme, of local bilinear quark
operatorspl i, whereln =1, ys, Yu, Y6 Yu, ¥5 Ouv. This calculation is carried out to two loops for
the first time. We consider both the flavor non-singlet andlsinoperators.

As a prerequisite for the above, we compute the quark fieldrraalization,ZL'z,’R", up to two
loops. We also compute the 1-loop renormalization fundtifor the gluon field,Z,';’R'/, ghost
field, Z'C"R", gauge parameteZ(';,’R", and coupling constamjg’R'/.

We use the clover action for fermions and the Wilson actiargfaons. Our results are given as
an explicit function of the coupling constaat = g2/1677, the clover coefficientsw, and the
number of fermion colorsN) and flavors K;), in the renormalized Feynman gauge. All 1-loop
guantities are evaluated in an arbitrary gauge.

Finally, we present our results in théS scheme, for easier comparison with calculations in the
continuum. We have generalized to fermionic fields in anteahyj representation. Some special
features of superficially divergent integrals, obtainezhfrthe evaluation of two-loop Feynman
diagrams, are presented in detail in Rﬂ. [1].
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1. Introduction

Numerical simulations of QCD, formulated on the lattice, make use of a varietyroposite
operators, made out of quark fields. Matrix elements and correlationidunsoof a whole variety
of such operators, are computed in order to study hadronic propertibssicontext. A proper
renormalization of these operators is essential for the extraction of @thysgults from the lattice.

In this work we study the renormalization functiof;, of fermion bilinearsg = 'y on
the lattice, wherd = 1, ys, Y, Y6 Yus Y6 Ouv (Ouv = 1/2[yu, W]). We consider both flavor singlet
and nonsinglet operators. We employ the standard Wilson action for glunahsl@ver-improved
Wilson fermions. The number of quark flavdxs, the number of colorsl; and the clover coeffi-
cientcsy are kept as free parameters. One necessary ingredient for threnaimation of fermion
bilinears is the 2-loop quark field renormalizatiahy, calculated in[[2]. The one-loop expression
for the renormalization functiody of the coupling constant is also necessary for expressing the
results in terms of both the bare and the renormalized coupling constant.

Our two-loop calculations have been performed in the bare and in themalined Feynman
gauge. For the latter, we need the 1-loop renormalization funclgrandZa of the gauge param-
eter and gluon field respectively, as well as the one-loop expressiodg Wwith an arbitrary value
of the gauge parameter.

The main results presented in this work are 2-loop bare Green’s fund@omgutated, one-
particle irreducible (1P1)), for the scalar, pseudoscalar, vectoal &ector and tensor operator,
as functions of the lattice spacing,, and the external momentum In general, one can use
bare Green’s functions to construzﬁ’Y, the renormalization function for operatér, computed
within a regularizatiorX and renormalized in a schenve We employ two widely used schemes
to compute the various 2-loop renormalization functions: Rifescheme and theISscheme.

The present work is the first two-loop computation of the renormalizatioarafibn bilinears
on the lattice. One-loop computations of the same quantities exist for quite someatim@ee,
e.g., [3] and references therein). There have been made severap@t® estimateZ, non-
perturbatively; recent results can be found in Refd. [[4—6]. A sesfesults have also been
obtained using stochastic perturbation theqty [7]. A related computatigardiag the fermion
mass renormalizatiod, with staggered fermions, can be found h [8].

2. Formulation of the problem

We will make use of the Wilson formulation of the QCD action on the lattice, with théiadd
of the clover (SW) term for fermions. In standard notation, it reads:

S

SG+ZZ(4F+%)U7f(X)lIIf(X)

X, H

Z Csw ZX‘;‘/ Lﬁf (X) Ouv 'fu\/(x) Ys (X)7
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1
@ (qu —Qv,u) (2.2)

and :qu = Ux,x+u Ux+u7x+u+v Ux+u+v7x+v Ux+v,x+Ux,x+v Ux+v,x+v—u Ux+v—u,x—u Ux—u,x

where :Fy, =

+ Ux,x—u Ux—u,x—u—v Ux—u—v,x—v Ux—v,x +Usxx—v Ux—v,x—v+u Ux—v+,u,x+u Ux+u,x (2.3)

s is the standard pure gluon action, made out »fliplaquettesr is the Wilson parameter
(set tor = 1 henceforth);f is a flavor index. Powers of the lattice spacighave been omitted
and may be directly reinserted by dimensional counting.

The “Lagrangian massty, is a free parameter in principle. However, since we will be using
mass independent renormalization schemes, all renormalization functidals wé will be cal-
culating, must be evaluated at vanishing renormalized mass, that is, mhisnset equal to the
critical valuemg: my — mer = my g2 + 0(g?).

One prerequisite to our programme consists of the renormalization funcBgnge, Zy, Zg
andZ,, for the gluon, ghost and fermion field&q, ¢, (), and for the coupling constagtand
gauge parameter, respectively (for definitions of these quantities, see Hgf. [2]); wealsth need
the fermion mass countertemm,. These quantities are all needed to one loop, exce@favhich
is required to two loops. The value of eagZh depends both on the regularizati¥nand on the
renormalization schem¢é employed, and thus should properly be denoteﬂ%ﬁ.

As mentioned before, we employ tR¥ renormalization schem§][9], which is more immediate
for a lattice regularized theory. Itis defined by imposing a set of normalizatiaditions on matrix
elements at a scaje, where (just as in th1Sscheme):

[ = [ (4rr/e¥e)Y/? (2.4)

wherey, is the Euler constant and is the scale entering the bare coupling constant u®Zyg
when regularizing irb = 4 — 2¢ dimensions.

3. Renormalization of fermion bilinears

The lattice operatorg’r = (I ¢ must, in general, be renormalized in order to have finite
matrix elements. We define renormalized operators by

or =ztR'(a 1) Oro (3.1)

The renormalization functionE';’R'/ can be extracted through the corresponding bare 2-point

functionsZ%(qaL) (amputated, 1PI) on the lattice, through the employment oRtheenormaliza-
tion conditions:

- LRI’ LRI <L _
aILITO [Zlﬂ Zr Xp (QQ)} =iz [trees (3.2)
whereZk(qga ) is the appropriate bare 1PI 2-point Green’s function on the latticelaaglis its
tree-level value. For the vector (V), axial-vector (AV) and tensordpérators, we can express the
bare Green'’s functions in the following way:
1 dHd (2
Zy(ea) =z (@a) + 5 2 (@)
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Im
55 (0a) = vy = (aa ) + ys‘g,f‘z;@w (3.3)
d(YuQv — Wllu)

Th(0q) = oz (ga) + s 5@ (qa)

q2

Only theZ\(}LVJ(qaL) parts are involved in Eq[(3.2). It is worth noting here that terms whichkorea
Lorentz invariance (but are compatible with hypercubic invariance}) sisg, (g* )2/0?, turn out
to be absent from all bare Green'’s functions; thus, the latter have the lsarentz structure as in
the continuum.

For easier comparison with calculations coming from the continuum, we neegbtess our
results in theMSscheme. For each renormalization function on the Iatf[{;@,'l, we can construct

its MS counterpart using conversion factors:

Crga) =T = T (3.4)

These conversion factors are regularization independent; thus theyecealculated more easily
in dimensional (DR), rather than Lattice (L), regularization, (see, e.d.,[R&]). Due to the non-
unique generalization gk to D dimensions, the pseudoscalar and axial-vector bilinear operators
require special attention in tidSscheme.

For a more detailed analysis of the renormalization of fermion bilinears anddbewersion
to theMSscheme, see Refd] [, 2].

4. Computation and Results

The Feynman diagrams contributing to the bare Green’s functions, atl12-bop level, are
shown in Figs[J1 anfl 2, respectively. For flavor singlet bilinears, therd extra diagrams, shown
in Fig. 3, which contain the operator insertion inside a closed fermion loops& Hiagrams give a
nonzero contribution only in the scalar and axial-vector cases.

AL

Figure 1: One-loop diagram contributing @4-. A wavy (solid) line represents gluons (fermions). A cross
denotes the Dirac matricds(scalar) s (pseudoscalar), (vector),ysy, (axial vector) andsoy,y (tensor).

In Figs.[1 td B, “mirror” diagrams (those in which the direction of the extefeahion line is
reversed) should also be included. In most cases, these coincidiytriith the original diagrams;
even in the remaining cases, they can be seen to give equal contribytiomabance under charge
conjugation.

The evaluation of all Feynman diagrams leads directly to the correspondie@ibaen’s func-
tionsZt. These, in turn, can be converted to the corresponding renormalizatiotidnsZ#’R'/, via
Eqg. (3:2). One-loop results fdi’r"R" are presented below in a generic gauge. The errors appearing

in these expressions, result from an extrapolation to infinite lattice.

N
1672

Zg.,Rl’ 14 ce | 3In(@®p?) — a, — 16.95241031)
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~7.73791593) s+ 1.380380684) cByy| (4.1)
Z5R =14 o Cr [ 3In(@2p?) — a, — 26.59544141)
P 1672
+2.2488685283) csw — 2.036015614) By (4.2)
2
LRI _ 9% 2
2N = 14 e e [ —In(a2j1?) + a, — 17.0180792087)

+3.913332614) Cow + 1.9722953006) cBy| (4.3)

The corresponding expressions &', ZxX" can be read off from Eqs[ #[4:%.5) below.

We present beIova’R'/ and Zk\’,R'l to two loops in the renormalized Feynman gauge. The
corresponding plots are exhibited in Figf. 4 ghd 5, as functions of thercfmrametercsw.
For a complete set of results, regarding the renormalization functionsesmmdimalized Green’s
functions, both in th&l’ and in the\'Sscheme, the reader should refer to Reﬂ’s[l[l, 2]. Furthermore,
a calculation regarding the multiplicative mass renormalizalign which is directly related to
the flavor singlet scalar operator, can be found in REf. [2]. The mgdimation of our results to
an arbitrary representation, as well as a detailed discussion regardirgyperficially divergent

1 2 3 4 5 6 7
A i T =N ~ R et
8 9 10 11 12 13 14

< e LN I s o

15 16 17 18 19 20

Figure 2. Two-loop diagrams contributing td-. Wavy (solid, dotted) lines represent gluons (fermions,
ghosts). A solid box denotes a vertex from the measure p#readction; a solid circle is a mass counterterm;
crosses denote the Dirac matriceg¢scalar),ys (pseudoscalar)y, (vector), sy, (axial-vector) andsoyy

(tensor).
b9 R e

Figure 3. Extra two-loop diagrams contributing % singlet aNdZay singlet- A Cross denotes an insertion of a
flavor singlet operator. Wavy (solid) lines represent ghi¢fermions).
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integrals, can also be found in these papers.

2
RI o
T i [f 20.61779865%6) -+ 4.7455646823) csw + 0.5431680285) cgw]
g )
+ o INr (25610(3) - 11.058(1) csw+ 33.937(3) By
~1352866)c3,, — 1.29146) cgw)
+er ( —53978(1) — 22357(2) csw— 104116(5) 2y
—32.26238) 3+ 4.55753) cgw)
+Ne ( —5159(1) + 18.543(5) csw -+ 20.960(6) By
+2.5121(5) Gy +0.17651) chyy )| (4.4)
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Figure 4: Z\';‘R"(aL u) = Z\';"Ws(aL p) versuscsw (Ne = 3, p =1/a,, B = 6.0). Results up to 2 loops are
shown forN¢ = 0 (solid line) and\; = 2 (dashed line); one-loop results are plotted with a doftes |

, 2
ZLR g 12;2 Cr | — 15.7962830665) — 0.2478276273) Csw + 2.2513661766) By
9
+ e [Nr (18497(3) — 1.285(1) csw+ 19.074(3) By

+1.03336) 3, — 6.75496) cgw)

o ( ~18401(1) — 389.86(1) Csw— 166738(6) 2y
+7.894(1) 3, + 4.3201(3) cgw)

N ( —21.62(1) — 33.652(5) Csw + 26.636(6) By

+10.2186(5) 3, + 1.48931) cgw)] (4.5)
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Figure 5: Z,k\’,R'l(aLﬁ) versuscsw (Nc = 3, 4 = 1/a, B, = 6.0). Results up to 2 loops, for the flavor

nonsinglet operator, are shown filg = 0, 2 (solid line, dashed line); 2-loop results for the flavorgsét
operator, folN; = 2, are plotted with a dash-dotted line; one-loop resultpéoged with a dotted line.
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