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1. Introduction

As it is well-known, in the improvement approach à la Symanzik [1] the lattice QCD action has
to be provided with an extra irrelevant contribution, the so-called Sheikholeslami-Wohlert term [2].
In Perturbation Theory (PT), it features a scalar coefficient cSW which can be Taylor-expanded in
powers of the bare coupling g0 as

cSW = c(0)
SW + c(1)

SW g2
0 + c(2)

SW g4
0 + O(g6

0) . (1.1)

The zero- and one-loop coefficients have already been determined for different lattice actions [3][4]
while c(2)

SW is still unknown: the final aim of this project is precisely to estimate it by combining the
Schrödinger Functional formalism (SF) and the PCAC relations in the same spirit as [5] and [6]
where c(0)

SW and c(1)
SW were successfully recovered.

The main difference with these two latter seminal papers lies in the fact that observables are
evaluated perturbatively without following a diagrammatic approach but rather by means of Nume-
rical Stochastic Perturbation Theory (NSPT), a computer algorithm characterized by a Langevin-
like evolution of the system.

2. Theoretical aspects - part I (basics)

The lattice formulation of QCD we adopt is that of Wilson: a concrete expression of the well-
known contributions to the action - namely the gauge (SG), fermionic (SF ) and Sheikholeslami-
Wohlert (SSW ) term - can be found in [5] whose notations and conventions inspire nearly all the
formulae appearing in this and the next section 1.

A suitable observable to study in order to evaluate c(2)
SW is provided by the quark mass mq which

can be conveniently computed by means of the lattice PCAC relation reading, 2

1
2
(∂ R

0 +∂
L
0 )〈Ab

0(n)O〉= 2mq〈Pb(n)O〉 , (2.1)

where O is any product of fields located at nonzero distance from n, ∂ R
0 (∂ L

0 ) is the lattice right
(left) derivative in the time direction and

Ab
0(n) =

N f

∑
f,g

ψ
f(n)γµγ5

1
2

τ
b
f gψ

g(n) , Pb(n) =
N f

∑
f,g

ψ
f(n)γ5

1
2

τ
b
f gψ

g(n) , (2.2)

where τb is a matrix acting on flavour degrees of freedom 3.
In order to fix c(2)

SW , one requires mq to be independent of contributions of order a: however, to
achieve full improvement Eq.(2.1) has to be modified to,

1
2
(∂ R

0 +∂
L
0 )〈Ab

0(n)O〉+ cA∂
L
0 ∂

R
0 〈Pb(n)O〉 = 2mq〈Pb(n)O〉 , (2.3)

1 More generally, we stick to the setup outlined in sections 2, 4 and 6 of [5].
2 From now on, the time direction will be assigned the subscript 0.
3 Spin and colour subscripts will be usually left implicit in order to ease the notation.
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where ca is a second improvement coefficient which, just like cSW , can also be decomposed as
cA = c(0)

A + c(1)
A g2

0 + c(2)
A g4

0 + O(g6
0). Once again, the first unknown contribution is at two-loop

level: see [5] and [6] for the determination of c(0)
A and c(1)

A .
The second main theoretical ingredient of the present strategy is given by the Schrödinger

Functional: assuming the time coordinate ranges from 0 to T and labelling the space coordinates
as ~n, it consists of replacing the usual periodic boundaries by Dirichlet conditions along the time
direction, namely,

Uk(n)|n0=0→ Wk(~n) , Uk(n)|n0=T → W ′k(~n) (k = 1,2,3) , (2.4)

for the gauge degrees of freedom 4 and (P± = (I± γ0)/2 with I being the identity matrix)

ψ
f(n)
∣∣
n0=0 → ρ

f(~n) = P+ ψ
f(n)
∣∣
n0=0 , ψ

f(n)
∣∣
n0=T → ρ

′ f(~n) = P+ ψ
f(n)
∣∣
n0=T , (2.5)

ψ
f(n)
∣∣
n0=0 → ρ

f(~n) = P+ ψ
f(n)
∣∣
n0=0 , ψ

f(n)
∣∣
n0=T → ρ

′ f(~n) = P+ ψ
f(n)
∣∣
n0=T , (2.6)

for fermions: boundary fields W , W ′, ρ , ρ , ρ ′ and ρ
′ will be defined later on.

Due to the Schrödinger Functional formalism, the three contributions to the lattice QCD action
get modified as follows:

• the gauge part SG becomes

SG = β ∑
n,µ,ν
µ>ν

ωµν(n)
(

1− Tr
2Nc

[
Uµν(n)+U†

µν(n)
])

, (2.7)

where the weight ωµν(n) for the lattice plaquette Uµν(n) is 1 everywhere except for the
spatial plaquette at n0 = 0 and n0 = T whose ωµν(n) reads 1

2 ;

• the fermionic part SF remains in principle unchanged; anyway, in order to have one more
parameter to play with, an additional phase eiθµ/Lµ is introduced in the definition of the
lattice covariant derivatives within the Wilson-Dirac operator: in practice, gauge fields Uµ(n)
appearing in SF are replaced by,

Uµ(n)→ eiθµ/LµUµ(n) , (2.8)

with θ0 = 0 and −π < θk ≤ π for k = 1,2,3;

• the clover term is set to 0 for all those lattice points with n0 = 0 or n0 = T .

4 Gauge fields along the time direction, defined for 0≤ n0 < T , have no constraints on them. It turns out that W and
W ′ can sloppily be written as W = Pe

∫
C and W = Pe

∫
C′ - see section 6 of [5] for notations and a more careful and

detailed treatment of this topic - where C and C′ play a similar role as the background field in classical physics: in what
follows we will refer to the case C = C′ = 0 as the trivial background.

3



P
o
S
(
L
A
T
2
0
0
9
)
2
0
3

NSPT calculations in the SF formalism C. Torrero

3. Theoretical aspects - part II (details)

Before outlining the procedure that should lead to an estimate of c(2)
SW , let us give a precise

shape to the observable O appearing in Eq.(2.3): a convenient choice reads,

O = a6
N f

∑
f,g

∑
~m,~m′

ς
f(~m)γ5

1
2

τ
b
f gς

g(~m′) , (3.1)

where

ς
f(~m) =

δ

δρ
f(~m)

, ς
f(~m) =− δ

δρ f(~m)
. (3.2)

After first plugging Eq.(3.1) into Eq.(2.3), then letting the derivatives with respect to ρ and
ρ act on the Boltzmann factor and finally setting all the fermionic boundary fields to zero, some
algebra allows one to write

mq =
1
2

[1
2(∂ R

0 +∂ L
0 ) fA + cA∂ L

0 ∂ R
0 fP
]

fP
, (3.3)

with 5

fA =
1
12 ∑

~m,~m′
〈H l f

[(~m+0̂)ω c , nε e]
(γ0)εβ τ

b
f g
(
P−
)

ωσ
Jgh
[(~m′+0̂)σ c , nβ e]

τ
b
hl 〉G , (3.4)

fP =
1
12 ∑

~m,~m′
〈H l f

[(~m+0̂)ω c , nε e]
τ

b
f g
(
P−
)

ωσ
Jgh
[(~m′+0̂)σ c , nε e]

τ
b
hl 〉G , (3.5)

with

H l f
[(~m+0̂)ω c , nε e]

=
[
U0(~m)

]
cb

(
M̃−1

)l f

[(~m+0̂)ω b , nε e]
, (3.6)

Jgh
[(~m′+0̂)σ c , nβ e]

=
[
U0(~m′)

]∗
cd

(
M̃−1∗

)gh

[(~m′+0̂)σ d , nβ e]
, (3.7)

where M̃ is the overall fermionic opearator in the lattice action.
fA, fP and mq depend on the lattice spacing a, the lattice extents Lµ , the bare coupling g0, the

gauge fields W and W ′, the angles θk (from now on, we will set the latter equal to a common value
θ ) and the improvement coefficients: recalling that the approach is perturbative, we can write 6,

mq(L,θ ,x0,g0,a) = m(0)
q (L,θ ,x0,a)+m(2)

q (L,θ ,x0,a)g2
0 +m(4)

q (L,θ ,x0,a)g4
0 +O(g6

0) , (3.8)

5 The subscript “G" stands for the mean over gauge degrees of freedom. Here and in Eqs.(3.6)-(3.7) repeated indices
are summed over. Moreover, from now on we tacitly assume that all quantities are rescaled with a to be dimensionless.

6 We make the dependence on W , W ′ , cSW and cA implicit not to overwhelm the notation; at the same time, we drop
the subscript on the lattice extents for a reason that will become clear soon.
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and in turn, thanks to dimensional analysis

m(k)
q (L,θ ,x0,a) = dL(c

(i≤k)
SW ,c(i≤k)

A )
a
L

+dx0(c
(i≤k)
SW ,c(i≤k)

A )
a
x0

+dθ (c(i≤k)
SW ,c(i≤k)

A )
aθ

L
+O(a2) . (3.9)

This formula can actually be simplified by setting the Lk’s to the same value L, putting L0 = 2L
and choosing n0 = L: thus, the corrections in a to m(k)

q will be grouped together into a single one
proportional to a/L. Since the aim of improvement is to get rid of lattice artifacts of order a, it
is reasonable to estimate c(2)

SW by requiring the only coefficient d(c(i≤k)
SW ,c(i≤k)

A ) left in the formula
above - after its reduction - to vanish. This can be achieved by the following steps: 1) fix c(2)

SW and
c(2)

A arbitrarily after setting c(0)
SW , c(1)

SW , c(0)
A and c(1)

A to their known values; 2) perform simulations
for different lattice extents keeping θ , W and W ′ constant; 3) fit the coefficient d(c(2)

SW ,c(2)
A ); 4)

repeat the previous steps for different choices of c(2)
SW and c(2)

A ; 5) collect the various estimates of
d(c(2)

SW ,c(2)
A ) and interpolate the values of c(2)

SW and c(2)
A for which d(c(2)

SW ,c(2)
A ) vanishes.

Before ending this section, some remarks are in order.
The first term on the r.h.s.of Eq.(3.8) should normally correspond to the bare mass M̂0 appea-

ring in SF ; however, in the present setup, this is the case only if θ = 0: we chose to set M̂0 = 0 but
to work with non-vanishing θ to avoid any infrared divergence.

Second, in Eq.(3.9) it is understood that mass counterterms - depending on cSW [7] - are sub-
tracted. Otherwise m(k)

q would not be 0 in the large L limit: this subtraction prevents extra improve-
ment coefficients to appear (see section 3 in [5]) but, in practice, this should really matter only
when working with renormalized quantities (while we deal with their bare counterparts).

Finally, it is possible to disentangle the effects of c(2)
SW and c(2)

A by means of W and W ′: in
particular it turns out that, if the trivial background (see footnote 4) is set, only c(2)

A has an effect
at two-loop level. We start with this choice of the boundary gauge fields to fix this coefficient,
afterwards W and W ′ will be changed to determine c(2)

SW thanks also to the by-then-known estimate
of c(2)

A .

4. Numerical aspects

Two more issues have still to be addressed about the present strategy, namely how configura-
tions are generated and how the Wilson-Dirac operator is inverted to compute fA and fP eventually:
to answer both, we must introduce some basics of NSPT 7.

Its core is given by the Langevin evolution equation that, for lattice gauge variables 8, reads

∂

∂ t
Uµ(n, t) =−i∑

A
T A[

∇n,µ ,AS[U ]+η
A
µ (n, t)

]
Uµ(n, t) , (4.1)

where t is an extra degree of freedom (which can be thought as a stochastic time), S is the part of the
lattice action depending on the U’s, η is a Gaussian noise while ∇ stands for the group derivative

7 See [8] and references therein for more details on this section in general.
8 As usual, fermion fields are integrated out so that only gauge degrees of freedom have to be eventually treated.
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defined as (index “A” is summed over),

F
[
eiαAT A

Uµ(n),U ′
]
= F

[
Uµ(n),U ′

]
+α

A
∇n,µ ,A F [Uµ(n),U ′]+ . . . , (4.2)

where T A are the generators of the algebra and F is a generic scalar function of both the variable
Uµ(n) and some more labelled U ′ for short.

Given this setup, it can be shown that

Z−1
∫

[DU ]O[U ]e−S[U ] = lim
t→∞

1
t

∫ t

0
d t ′
〈
O[Uη(t ′)]

〉
η

, (4.3)

where Z is the partition function and O[U ] a generic observable depending on the gauge fields.
Perturbation theory enters into play by formally expanding each gauge degree of freedom in

powers of β
−1
0 - defined as β0 = 2Nc/g2

0 being Nc the number of colours - up to a given order s as

Uµ(n, t) = I+
s

∑
k=1

β
− k

2
0 U (k)

µ (n, t) , (4.4)

and then plugging this Taylor series 9 into Eq.(4.1): this results in a consistent hierarchical system
of differential equations which can be numerically integrated by discretizing the stochastic time as
t = nτ with n integer. In practice, the system starts from an arbitrary configuration and evolves
by means of the solution of the discretized counterpart of Eq.(4.1): the desired observable is then
obtained by averaging its measurements on its plateau - recall the limit in t in Eq.(4.3) 10.

As for the inverse of the fermionic operator, the entries needed to get fA and fP can be com-
puted by means of the following perturbative formulae

M̃−1(0)
= M̃(0)−1

,

M̃−1(1)
= − M̃(0)−1

M̃(1)M̃(0)−1
,

M̃−1(2)
= − M̃(0)−1

M̃(2)M̃(0)−1
+

− M̃(0)−1
M̃(1)M̃−1(1)

,

. . .

where only the zeroth order of M̃ has to be truly inverted: its expression for trivial W and W ′ can
be found in section 3.1 of [6].

5. Preliminary results

To test the correctness of the overall setup, we computed the one-loop contribution to mq

without any counterterm subtraction for different choices of θ and c(0)
SW

11 and compared the results

9 Strictly speaking, Eq.(4.3) is valid only if the boundary gauge fields are set to the identity as in this first part of the
study; once that a non-trivial background field is introduced, the expansion would read Uµ (n, t) = exp[(C′k−Ck)/T ] ·
· [I+∑k β

− k
2 U (k)

µ (n, t)] - consult section 6.2 in [5] for the meaning of the first term in this product.
10 This relation is true only for continuous t so that simulations with different τ values have to be performed in order

to extrapolate to τ → 0 afterwards.
11 This is indeed the only cSW contribution that enters into play at this order with trivial W and W ′.
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with the analytical values in Table 1.

θ c(0)
SW = 0.0 c(0)

SW = 1.0 c(0)
SW = 1.5

1.40 2.67621(4) 1.67151(2) 0.94999(1)
1.00 2.63837(3) 1.64808(1) 0.93229(1)
0.45 2.60727(3) 1.62694(1) 0.91948(1)
0.00 2.60571 1.62045 0.91067

Table 1: Numerical results for m(1)
q on a 103 ∗ 21 lattice with c(0)

A = c(1)
A = 0: the last line contains the

infinite-volume results obtained from [7].

It is reassuring that, when varying c(0)
SW , outputs change accordingly: the still-existing gap is

explained by recalling that finite-size effects are still present and that the analytical results corre-
spond to m(0)

q = 0 while in our simulations m(0)
q 6= 0 due to the non-vanishing values of θ (m(0)

q

approaches with decreasing θ 12 the analytical infinite-volume values computed with θ = 0.0).

6. Conclusions and acknowledgements

According to the first, preliminary results, the outlined approach seems to be feasible: how-
ever, since different extrapolations (in τ and L) and interpolations (in c(2)

A and c(2)
SW when dealing

with non-trivial W and W ′) are needed, extra care will have to be paid not to spoil accuracy.
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This work was supported by the DFG SFB/TR 55.

References

[1] K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. II. O(N) Nonlinear Sigma
Model in Perturbation Theory, Nucl. Phys. B 226 (1983) 187.

[2] B. Sheikoleslami and R. Wohlert, Improved Continuum Limit Lattice Action for QCD with Wilson
Fermions, Nucl. Phys. B 259 (1986) 572.

[3] R. Wohlert, Improved Continuum Limit Lattice Action For Quarks, unpublished.

[4] R. Horsley, H. Perlt, P.E.L. Rakow, G. Schierholz and A. Schiller, Perturbative determination of cSW

for plaquette and Symanzik gauge action and stout link clover fermions, Phys. Rev. D 78 (2008)
054504. [hep-lat/0807.0345].

[5] M. Luscher, S. Sint, R. Sommer and P. Weisz, Chiral symmetry and O(a) improvement in lattice
QCD, Nucl. Phys. B 478 (1996) 365. [hep-lat/9605038].

[6] M. Luscher and P. Weisz, O(a) improvement of the axial current in lattice QCD to one loop order of
perturbation theory, Nucl. Phys. B 479 (1996) 429. [hep-lat/9606016].

[7] H. Panagopoulos and Y. Proestos, The critical hopping parameter in O(a) improved lattice QCD,
Phys. Rev. D 65 (2002) 014511 [hep-lat/0108021].

[8] F. Di Renzo and L. Scorzato, Numerical Stochastic Perturbation Theory for full QCD, JHEP 0410
(2004) 073 [hep-lat/0410010].

12 An analytical expression for m(0)
q can be found in section 3 of [6].

7


