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1. Introduction

A major issue of Lattice Gauge Theory has been the reducfieffects which are due to the
finite lattice spacing, in order to better approach the elusive continuum limit.eOthe years,
many efforts have been made f6ial) improvement in lattice observables, which in many cases
is automatic by virtue of symmetries of the fermion actiorrcérding to Symanzik’s program [1],
one can improve the action by a judicious addition of irratewoperators. Also, in the twisted mass
formulation of QCD [2] at maximal twist, certain observablerec (al) improved, by symmetry
considerations. The first 1-loop perturbative computatibi?(a?) effects was recently performed
by our group [3]. This regards the evaluation of the fermiompagator and Green'’s functions for
ultralocal bilinears of the fornw’), = WrALW, using the Wilson/clover fermions and Symanzik
improved gluons. Extending a calculation up®ga?) brings in new difficulties, compared to
lower order ina; for instance, there appear new types of singularities. frbeedure to address
this issue is extensively described in Ref. [3]. T#i&a?) terms of such perturbative computations
are of great utility since they can be subtracted from natudpeative estimates to minimize their
lattice artifacts.

The generalized parton distributions (GPDs) of the nuclbetermine non-forward matrix el-
ements of gauge invariant light cone operators; the monwrasich operators can be evaluated
on the lattice. GPDs also give information on interestingrdgities such as the quark orbital an-
gular momentum contribution to proton spin [4]. Moreovére generalized parton distributions
can be measured in high energy scattering experimentsndtarice the deeply virtual Compton
scattering of virtual photons off a nucleon. Thus, by cormgumoments of GPDs in lattice QCD
one can explore many aspects of the nucleon structure. Tératops that are related to the GPDs
must be renormalized, before one compares results fromladiions to physical, experimentally
measurable quantities.

In this work, we investigate the perturbative renormalaabf the fermion propagator, local
and twist-2 fermion operators. We compute all matrix eletméor the amputated Green'’s functions
of the inverse fermion propagator, ultralocal bilinears &wist-2 1-derivative operators, defined
as @F{“ﬁv}raw (symmetrized and traceless). Although our expressionalfahese matrix
elements are as general as possible (the dependence on alhpasameters is shown explicitly),
these are extremely lengthy and complicated to be preséeted Thus, we show our results only
for the renormalization constants and for particular cbeiof the various parameters. In Section 2
we briefly describe the procedure for these computationgreBections 3 - 4 we present our results
for the renormalization functions. We also compare with-perturbative estimates provided by
the ETM Collaboration. Due to space limitations the rendizaion of the ultralocal operators is
not discussed here, but will appear in a longer write-up.

2. Description of the calculation

In the framework of this computation we employ a fermion @etivhich includes the clover
term, and also an additional mass parameter,
— ar
&= ZZ Wt (x) -
X
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A summation over the Dirac indicas p is implied. The advantage of the above action is that it
combines different actions that are used widely: Wilsogy(— 0, u — 0), clover 4 — 0) and
twisted mass ¢syw — 0). It is important to mention that for the case of twisted snBsmions,
Eqg. (2.1) corresponds to the twisted mass action in the $edcalisted basig (x = e isnT W).
The appropriate form of this action in physical basis hastatimn of the Wilson termy —
—iry 3. This is crucial because the definition of tAefactors in physical and twisted bases
are different, for instancBi™® — ziwisted andzPWs — ztwisted for the axial and vector currents with
or without a derivative. The results presented here ara dtlé physical basis.

For the gluon part we use a family of Symanzik improved gluand more precisely 10 dif-
ferent sets of Symanzik parameters that are widely usednulations; these are shown in Table 1
of Ref. [3]. In the same reference, the reader can find alilddta the calculation procedure and
the evaluation of the superficially divergent integralse Babstantial difference with our previous
computations is the presence of massesnd u, in the fermion propagators. The dependence
of superficially divergent integrals op, m, i is nontrivial and it is a rather complicated task to
extract this dependence explicitly. In fact, there are lfiotgly" IR divergent integrals (they are
convergent only aD > 6 dimensions) and a few hundred of divergent integral® at 4 — 2¢
dimensions.

The 1-loop diagrams that enter our three calculations avestin Fig. 1. Diagrams la and
1b regard the correction to the inverse fermion propagaliagram 2 corrects the local bilinears
and finally diagrams 3a-3d contribute to the calculationhef twist-2 bilinears. The appropriate
operator employed in each computation is represented lysa ar diagrams 2, 3a-3d.

A0 U A W

1b 2

& oy o o

Figure 1: One-loop diagrams contributing to the correction of the atated Green’s functions
of the propagator (1a, 1b), local bilinears (2) and twistp2mtors (3a-3d). A wavy (solid) line
represents gluons (fermions). A cross denotes an insatithre operator under study.

3. Renormalization of the fermion field to ¢'(a?)

For all the renormalization factors used here we employ th&I®M scheme. The fermion
field renormalization constarify, can be obtained using alternative renormalization canitthat
differ in their lattice artifacts. The most widely used cdimhs are the following two

1 N
zi = il [Scont( p)- S;Eloop(p)] ;o Sont(P) = % (3.1)
p2=p2
1 —iy, isin(app)yp
ZB =-T Stree ' _100 ) Stree = Pa - 3.2
§ = T | SreelP) - S loop(P)] . (P = P any) (3:2)
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with the trace taken over the Dirac indices. Tqéloop(p) is the amputated Green’s function for
the inverse propagator up to 1-loop; it was computed frorgrdias 1a and 1b of Fig. 1. Indeed,
the constantié\ andz(? differ only in their lattice artifacts, since th&(a?) expansion 0Syee(p)

is simply Seond(P) +182 3, P3 Yo/ (6 ).

In the most general expression &, we show explicitly the dependence on the action pa-
rametercsw, the coupling constarg, the number of colorsl;, the gauge fixing parametar, the
massesn, U, the lattice spacin@ and the external momentum On the contrary, we cannot
expres<Zq in a closed form as a function of the Symanzik parametgrssy, c,, c3; we have com-
putedZ, for each of the 10 sets of Symanzik coefficients shown in Tabdé Ref. [3]. Next we
provide our result foZy using the condition in Eq. (3.1), for the Landau gauggy =0, m=0
and tree-level Symanzik improved gluons

A_| g 2P GO 22202 (2,2, 13 2 157p4
Zq = [ 1 % +16n2{ 13.02327262) + < In[a2u +ap](3u b 1 p2>
+ 115904391) 12 + 4.27704473) 25 + 114716341) p+ w
P? 40 (p?)3
o1 WS sTpt 7 ufpa 1 ppA 169u’pd 43°pA

240 (p?)2 180 p2 20 (p?)® ' 120 (p?)* ' 180 (p?)3 80 (p?)2

7 ulO 1 “8 2 “6 1u4

2
P 7 1 L2 1yt
40 (p?)*  12(p?)®  9(p?)? 3 p?

+ In[1+ P](

20 @5 T8 (@5 36 (27 12 (PP

7 u®p4 1pPps 35ubps 1 u4p4)>H (33)
p2 A

In the above expressiopd = ¥, pf, Cr = (N2 —1)/(2N;), and 1 is the renormalization scale.

No ¢'(al) terms appear in Eq. (3.3) since we seequal to zero. Although the mass dependence

shown in Eq. (3.3) is very complicated, the numerical refaritthe renormalization constat,

depends mildly onu (for the values used in numerical simulations by ETMO03 < u < 0.01).

A very important issue is that th&(a?) terms depend not only op?, but also on the direction
of the momentunp, as manifested by the presencepdf As a consequence, different renormal-
ization prescriptions, involving the same renormalizatcaleu but different directions op, lead
to a different renormalization constant. The strategy oag follow is to average over the results
for Zq which are obtained using these different directions.

In Table 1 we present our 1-loop results &y, up to 0(@?), for the two renormalization
conditions: Eq. (3.1)15\) and Eqg. (3.2) ZE). The results are given in the chiral limit for the
Landau gaugegsw = 0, N, = 3 and for 3 values of the coupling constght= 2N, /g°. Instead of
the bare coupling we have used the tadpole-improved caufsi defined ag? = g?/(plaq), to
achieve further improvement. The renormalization s¢algas set to 1a, that isa® p?> = 1. This
is a well-defined choice, since all possible lattice momémeamutations of+1,0,0,0)) have the
samep4. Thus,Z, is the same for all these permutatioﬁﬁ.ﬁ(az) andzg3 7@ are theo (a?) effects
of Zé\ and Zg‘ respectively. The last column gives the non-perturbatstarates of ETMC [5],
using the renormalization condition of Eq. (3.2) and emjpig\the same parameters as we did. In
Z3™" P our ¢/(a?) corrections were already subtracted to reduce lattictaaisi In fact, ETMC
applied the subtraction procedure to all their data; tleefthe behavior aZq™" ™" against the
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renormalization scale becomes flatter in the energy reglmrevperturbation theory is valid. This
indicates that the lattice artifacts are suppressed.

3 ZqA Zéﬁ(az) Zg, Zg’ o(@) Z(r::onf pert

3.80 0.655255014(4) -0.039554503(1) 0.771056601(4) 6247083(1) 0.755(4)
3.90 0.663871997(4) -0.045705298(1) 0.782134880(4) 2BH7584(1) 0.757(3)
4.05 0.675276827(4) -0.053846057(1) 0.796797308(3) "®DH424(1) 0.777(5)

Table 1: Perturbative and non-perturbative estimateZq,dbr different coupling constants, in the chiral
limit and using two renormalization conditions, for tres«l Symanzik gluonsggsw = 0, Ne = 3.

The numbers is parenthesis denote the systematic erroiagémom our procedures for numerical
integration over loop momenta. Since we have used two alteerenormalization conditions, it is
worth comparing their lattice artifacts. Faf = 4 and the same parameters of Table 1, we isolated
the contribution of theZ(a?) terms and tabulated them in Table 2. In the same Table wergrese
the averaged result@éﬁ(a2)>, <Z('q3 ﬁ(a2)>. For the averaging we used all 24 lattice momenta with
a’p? = 4: 16 permutations of+1,+1,+1,4+1) and 8 permutations df:2,0,0,0). One observes
that, although the condition in Eq. (3.1) givé%a?) correction at tree level foZQ, the combined
0/(a?) effects inzg are much smaller than the oneszgf, which is exactly 1 at tree level. Itis also
evident that averaging over momenta with different diti helps to reduce the overal(a?)
contributions.

B =™ @™ zm™ (z3”)
3.80 0.35679267(9) 0.29105315(4) 0.45876742(9) 0.34E8(4)
3.90 0.26014128(8) 0.23208860(4) 0.41544327(8) 0.3087(39
4.05 0.13958988(7) 0.15854326(3) 0.36140590(7) 0.26BAR)

Table 2: The & (a?) contributions up to 1-loop in the perturbative results ferdy atp?=A4.

4. 0(a?) corrections to the renormalization of twist-2 fermion bilinears

In this section we present the computation of the amputatedrs functions for the following
two twist-2 operators

l — < — <« l — —
oivvet = Q[WVWD W TO W Wy, Dy, TV — 78, Y WD 1o W (4.1)
0
oivive lrw S IV S 1 IV
{ :E{Wygyle\,zr W4+ Wy,D T w}—zémzwprpr v 42
0

which are symmetrized and traceless, to avoid mixing withelodimension operators. We have
computed, tog'(a?), the matrix elements of these operators for general extardies vy, vy,
massg, Ng, &, p, csw andA. The final results are available for the 10 sets of Symanziifictents
we have used in the calculation 4.
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The 1-derivative operators fall into two different irredhle representations of the hypercubic
group, depending on the choice of the external indiges». Hence, we distinguish between

Z\% = Z\\;1:V27 2\3 = Z&#sz Zj = ZXlZVZ’ Zﬁ - ZXl#Vz (4.3)

The renormalization conditions from whidy andZa are obtained, is defined in the RI'-MOM
scheme, as

zza T na ) A =T [n A

o NG AVLv2 =il Py,) —traces (4.4)

’ ocont
p?=p2

p2=p?

wherel v, = Y, Y5 W,. The quantity/\‘g"z(p) is our result up to 1-loop for the amputated Green'’s
function for each operator. In the renormalization cowditthere is a choice of usiny,%,2, in-
stead ofA 2 2. The finalZ-factors of the two choices have different lattice artiéadkpplying the
renormalization condition and using tdgthat we computed perturbatively with it8(a®) correc-
tions, we have the results f@; andZa. In Table 3 we present these results in the chiral limit, for
tree-level Symanzik gluong = 3.9, csw = 0 and Landau gauge. We chose six different values of
the momentum, thus six renormalization scales.Zgave employed Eq. (3.1), and we usat} 2

cont
in Eq. (4.4). The extrapolation errors are smaller thenakedigit shown in Table 3.

ap Zy 4 Zi z

(4,222) 104129 1.05738 1.08270 1.06309
(5,2,2.2) 1.04411 1.04331 1.08772 1.04669
(6,2,2.2) 1.04881 1.02365 1.09312 1.02496
(3,3,3,3) 1.00343 1.05427 1.03778 1.03607
(4,333) 0099660 1.05237 1.04456 1.03289
(5,3,3,3) 099731 1.04736 1.05543 1.02660

Table 3: Perturbative results fafa and2y in the chiral limit, for various renormalization scales.
The action parameters are: tree-level Symanzik gluongjaagaugel = 3.9, csw =0, N = 3.

For the case of the vector operator with# v, we give the result for 1{#\\‘}1"2(p) -A‘gggm] which
contributes t&Z?, for the Landau gauge, tree-level Symanzik gluangy = 0, 4 = 0

4ps P,
3p?

pﬁl + péz Crg?
6 1672

T AR () AR | = 1, — By 150457521 pf, +

~ 8pf, In(p?)

3+ ( —0.132123) p*p;, — 4.63521) py, —4.0096(1) pg, p5,

353 p4p5, 29 p4ps, pY, | 179 (P}, P, + P5, PY,)

720 p? *90 (p?)2 90 p?
103 331 1013
2. 2v( Y9 9 o | 991 4 2 2
+ In(@2p?) ( — 550 PP S, + 50 P + g0 Pl pv2)>
+ symmetric termsv; < VZ] (4.5)
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It is now interesting to use non-perturbative estimateszipandZ,,, combined with ours(a?)
terms, in order to see if the subtraction procedure worksfaethese operators. Our collaborators
in ETMC provided us with data for the physicat [7] corresponding to the six momenta of Table
3. Note that the momenta can be grouped into two categoresra@ding to their spatial values:
(2,2,2) or (3,3,3). Non-perturbatively it is observed tthegtse groups have different lattice artifacts
and a discontinuity appears in téefactors with 1-derivative, as shown in Fig. 2. We also plat t
subtracted non-perturbative data, which exhibit a smoetiabior onﬁ. The errors are too small
to be visible.

unsubtra‘cted—*»;
195} subtracted
1.2 . ]
N< .
N 115¢f . E
11+ R
1.05 i Il Il Il Il Il Il Il ]
1 12 14 1.6 1.8 2 2.2 2.4
2 pz

Figure 2: Physical non-perturbati\«'ﬁz.A with subtractions o7 (a?) terms.

Another plot demonstrating the achieved improvement ofp@murbative estimates for the
renormalization constants using afrcorrection terms, is shown in Ref. [8]. In particular, foeth
local axial renormalization constant it is shown that, bgnasting the subtracted numbers IS
scheme and setting the renormalization scale to 2GeV, ota&nshba good plateau when plotting
Z for each of the momentum 4-vectors.
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