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We show a lattice determination of the strong coupling constantαs(MZ) from the vacuum po-

larization function (VPF) calculated onNf = 2+ 1 QCD gauge configurations generated by the

JLQCD and TWQCD collaborations with dynamical overlap fermions. Fitting lattice data of VPF

to a perturbative formula supplemented by the operator product expansion (OPE), we determine

the parameterΛ(3)
MS

. Evolving the running coupling constant to theZ boson mass scale, we obtain

αs(MZ) = 0.1181(8)(+4
−2)(

+5
−6) as our preliminary result, where the first error is statistical one, and

the second and third errors are systematic errors due to discretization effect and other remaining

uncertainties in this calculation.
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1. Introduction

Lattice QCD provides a natural framework to calculate the vacuum polarization functions
(VPFs). In fact, the VPFs in the vector (V) and axial-vector (A) channels can be extracted from
two-point correlation function with space-like momentum insertions, which cover the the energy
region from zero to the lattice cutoff. Our recent study [1] in Nf = 2 QCD proposed to use VPFs to
determine the strong coupling constant by matching them with the perturbative calculations. This
method gives a consistent result with in other lattice calculations atNf = 2 [2, 3]. We extend this
study to the realistic2+1-flavor QCD with dynamical light and strange quarks and determine the
strong coupling constant through OPE formula including terms up to a mass dimensionn= 4. One
of the advantages of our approach is that we can use the gauge configurations already produced
for spectrum studies. Another advantage is that the finite size correction is under control, since we
consider physical observables at short distances. A similar strategy was also proposed in [4], which
considers the quarkonium two-point function instead.

Simulations are carried out on theNf = 2+1 dynamical overlap fermion configurations gen-
erated by the JLQCD and TWQCD collaborations. Sea quark masses in lattice units areamud=
0.015, 0.025, 0.035, and 0.050 for the up and down quarks, andams= 0.08, 0.10 for the strange
quark [5]. The valence light quark masses are set to be equal to the sea quark masses. The set of up
and down quark masses covers the range of 0.2ms–0.8ms, while the set of the strange quark mass is
close to its physical value. The inverse lattice spacing isa−1 = 1.83 GeV, which is obtained from
the static quark potential withr0 = 0.49fm, and lattice volume is163×48. The physical volume is
thus about(1.8 fm)3. Topological charge of our configurations is fixed to zero, but this only gives
small finite size effects to long distance physics [6]. We expect that this gives negligible effects to
the short distance physics as considered in this work.

2. Lattice calculation of vacuum polarization functions

In the continuum theory the transverse (Π(1)
J ) and longitudinal (Π(0)

J ) parts of VPF are defined
through the two point correlation function of vector (J = V) and axial-vector (J = A) currents,

〈JµJν〉(q) = (δµνq2−qµqν)Π(1)
J (q2)−qµqνΠ(0)

J (q2) (2.1)

with four-dimensional momentumq after a Fourier transformation. The longitudinal part in the
vector channel vanishesΠ(0)

V (q2) = 0, while in the axial-vector channel it is proportional to the
quark mass. The above parameterization respects the Ward-Takahashi (WT) identity.

Defining ΠJ(q2) ≡ Π(0)
J (q2)+ Π(1)

J (q2), the perturbative expansion of VPF forΠV+A(q2) ≡
ΠV(q2)+ΠA(q2) in theMSscheme is generally given by

ΠV+A|pert(Q2,αs) = c+CV+A
0 (Q2,µ2,αs)+CV+A

m (Q2,µ2,αs)
m2

r (Q
2)

Q2

+ ∑
q=u,d,s

CV+A
q̄q (Q2,αs)

〈mq̄q〉
Q4 +CV+A

GG (Q2,αs)
〈(αs/π)GG〉

Q4 +O(Q−6)(2.2)

with analytic functionsCV+A
X (X= 0, q̄q, andGG) and vacuum expectation values of operators up

to dimension 4. The first termc in (2.2) is a scheme-dependent constant and does not contribute
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to the Adler functionQ2dΠ/dQ2, which is a physical observable. The second and third terms are,
on the other hand, scheme independent and perturbatively calculated at three loop order in theMS
scheme [9, 10, 11]. The third term contains the running massmr(Q2) [12, 13]. The fourth and fifth
terms correspond to higher order effects in OPE. The Wilson coefficients are calculated at three-
loop order [12]. An important fact is that once the divergence of the current is renormalized, the
perturbatively calculated VPFs must be equivalent among different renormalization scheme up to
neglected higher order terms except for the scheme dependent constant termc. This also applies to
the VPF obtained from lattice calculation when the chiral symmetry is exactly preserved. At finite
lattice spacings, there are discretization effects ofO(a2Q2) which can be extrapolated away towards
the continuum limit. It should be noted that the exact chiral symmetry of the overlap fermion partly
eliminate the unphysical terms ofO(a2Q2) to satisfy the WT identities. We therefore use (2.2) to
fit VPF. This is important to reduce the systematic errors and obtain a precise value ofαs. In our
previous study inNf = 2 QCD [1], we had to use more complicated method to extract the physical
VPFs, because we used non-conserving (aixal-)vector currents. (Also, see below.)

With the overlap fermion formulation, the conserved vector current has a complicated form.
By generally writing in a bilinear formVµ(x) = ∑w,zq̄(w)Kµ(w,z|x)q(z) with a non-local kernel
Kµ(w,z|x), whereKµ is determined such that it forms a Noether current of the overlap fermion
actionS= ∑x,y q̄(x)Dov(x,y)q(y) under a local vector transformation [7]. The flavor non-singlet
conserved vector and axial-vector currents are thus written as

Vacv
µ (x) = ∑

w,z
q̄(w)TaKµ(w,z|x)q(z), Aacv

µ (x) = ∑
w,z

q̄(w)TaKµ(w,z|x)[γ̂5q](z), (2.3)

whereTa denotes the generator ofSU(Nf ) andγ̂5(x,y) ≡ γ5(δx,y−Dov(x,y)/m0) with m0 = 1.6.
In this study we consider the two point correlation function of conserved and local currents,

〈T{Jcv
µ (x)Jloc

ν (0)}〉, whereJloc
µ is eitherV loc

µ (x) = Zq̄(x)γµq(x) or Aloc
µ (x) = Zq̄(x)γµγ5q(x). The

renormalization constantZ is determined through the RI/MOM scheme asZ = 1.39 [8]. The WT
identities in the momentum space are then written as

∑
µ

Q̂µ〈Vcv
µ V loc

ν 〉(Q) = 0, ∑
µ

Q̂µ〈Acv
µ Aloc

ν 〉(Q)−2mq〈PAloc
ν 〉(Q)+ 〈δAAloc

ν 〉 = 0. (2.4)

with a lattice momentum̂Qµ = 2sin(aQµ/2)e−iaQµ/2, which corresponds to a backward derivative
operator andaQµ = 2πnµ/Lµ with Lµ=1∼4 the extent of the lattice in theµ-th direction. The second
term for the axial-WT identity in (2.4) represents the correlation function of pseudo-scalar operator
P(x) = q̄(x)γ5(1−Dov/m0)q(x) and the local axial-vector current. The third term is an extra contact
term, which is a constant in the momentum space, derived from the axial transformation ofAloc

ν on
the lattice . This term vanishes in the massless limit, and its magnitude is negligibly small. Vector
and axial-vector VPFs are now given by

〈Jcv
µ Jloc

ν 〉(Q) = (δµν |Q̂|2− Q̂∗
µQ̂ν)Π(1)

J (Q)− Q̂∗
µQ̂νΠ(0)

J (Q)+∆J
µν(Q). (2.5)

Here,Π(0)
V (Q) = 0 because of the conserved current, whileΠ(0)

A (Q) represents a remnant due to

PCAC. The transverse partΠ(1)
J (Q) is extracted as

Π(1)
J (Q) = 〈Jcv

µ Jloc
µ 〉(Q)/(|Q̂|2− Q̂∗

µQ̂ν ,). (2.6)
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The additional term∆J
µν(Q) comes from the violation of the current conservation for the local

currentJloc
ν . ∆J

µν(Q) can be expanded in terms of smallaQ̂µ as

∆J
µν(Q) = ∑

m,n=1

(
δµν ∑

ρ
|Q̂ρ |2m−|Q̂µ |2(m−1)Q̂∗

µQ̂ν

)
a2nQ2n

ν Fmn(Q̂ν). (2.7)

In this analysis we ignore this contribution to VPFs, because of its smallness in the range(aQ)2 < 1,
and will later estimate associated systematic errors. The VPFΠV+A(Q2) thus extracted in our lattice
calculations is plotted in Fig.1. The statistical fluctuation is small enough to fit itsQ2 dependence
and to extractαs.

3. Fit with the perturbative formula

Here we discuss a fit of the lattice VPF data to the OPE formula. In this analysis the renor-
malization scale is set toµ = 2 GeV, though the final results should not depend onµ up to
higher order corrections. The gluon condensate〈(αs/π)GG〉 is defined only through the per-
turbative expression like (2.2) due to the renormalon ambiguity [14], and we treat〈(αs/π)GG〉
as a free parameter to describe the associated1/Q4 correction. On the other hand, the quark
condensate〈q̄q〉 is well-defined in the massless limit because there is no mixing with lower di-
mensional operators thanks to the exact chiral symmetry of the overlap fermion. Although it has
a m/a2 divergence at finite quark masses, this gives a tiny correction (∼ 0.1–0.2%) compared
to 〈mq̄q〉/Q4 at our value of lattice spacing. We therefore neglect this contribution. Then the
quark mass dependence ofΠV+A|pert(Q2), which consists of the third and fourth terms in (2.2),
is determined byαs only, once the quark condensate is determined elsewhere. The third term
is given bymr(Q2) = Zm(2GeV)mq× [m̂(Q2)/m̂(4GeV2)] with Zm(2GeV) ' 0.833 [15]. In the
fourth term, quark condensate is an input parameter,〈q̄q〉 = −[0.236(7)(+13) GeV]3, which is
taken fromNf = 2 hadron spectroscopy [15]. While the precise value of the quark condensate
obtained in [16] has not been used here so far, this makes only a tiny difference to VPF since
CV+A

q̄q (Q2,αs)〈mq̄q〉/Q4 is relatively small.
There are three unknown parameters,αs(Q2), c and 〈(αs/π)GG〉, in the fit of VPF using

(2.2). The QCD scaleΛ(3)
MS

controls the running coupling constantαs(Q2), which is evaluated
using a four loop order formula [17]. Figure 1 shows a(aQ)2 dependence ofΠV+A(Q2) in a
window 0.4≤ (aQ)2 ≤ 1.0. Fit curves shown in this plot are (2.2) with the value for the unknown
parameters extracted in the fit range0.463≤ (aQ)2 ≤ 0.994.

The upper limit is chosen to avoid significant lattice artifact, which is estimated by a difference
of the lattice momentumaQµ from another definition2sin(aQµ/2). With a constraintaQµ ≤ π/4,
the results are unchanged within 1σ level.

To determine the lower limit we investigate the stability of the fit results. Figure2 plots the
dependence of fit parameters on the lower limit. We observe that around(aQ)2

min =0.4–0.5 all
parameters are stable. It turned out that the contribution of the higher order terms in OPE,1/Q6,
is negligibly small around this region. In our study we set(aQ)2

min ' 0.463. In order to investigate
where the quark and gluon condensate terms give significant contributions, we attempt a fit with
(2.2) but without the fourth and fifth terms.(aQ)2

min dependence forΛ(3)
MS

is also given in Fig.2
by filled circles. There is a significant deviation from the full analysis below(aQ)2 = 0.48. This
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Figure 1: (aQ)2 dependence of VPF,ΠV+A(Q), at all valence quark masses:mq = 0.015 (circle), 0.025
(square),0.035(diamond),0.050(triangle). Top panel is a result inms = 0.08; bottom is inms = 0.1. Solid
lines show a fit function at each quark masses. Here we use a fit range determined as explained in a text.

implies that the contribution from the dimension-4 operators play an important role in(aQ)2 <

0.48. The statistical error becomes small as the number of the fit parameters is reduced when we
use the leading term only, howeverχ2 become worse asχ2/dof∼ 3.0 because the non-perturbative
quark mass dependence is not described by the perturbative function.

After doing a simultaneous fit of the VPF data at all sea quark masses, theΛ parameter is
obtained asΛ(3)

MS
= 0.247(11). At theZ boson mass scale the strong coupling constant is obtained

asαs(MZ) = 0.1181(8).

4. Systematic errors

We estimate the size of systematic errors in our results.

Discretization effect can be estimated using perturbation theory, as the effect is more im-
portant at large momentum region. We calculate the one loop diagram of VPF,ΠPT

V+A(Q2), with
local and conserved currents in lattice perturbation theory. The result may be parameterized as
c−1/(2π2) ln(aQ)2 + 0.0062(aQ)2 for small a. The logarithmic term is the same as in the con-
tinuum perturbation theory andc is the scheme dependent constant as already noticed. The term
0.0062(aQ)2 comes from the discretization effect. By subtracting this term from the lattice data
the final result forαs(MZ) changes by+0.0002in α(Mz), which gives a conservative estimate of
the leadinga2 effects. Other discretization error may come from the non-conservingJloc

ν as given
in (2.7). The maximum magnitude ofFV+A

11 (Q) in (2.7) is less than 1% ofΠV+A(Q) in the fit range
0.463≤ (aQ)2 ≤ 0.994. Thus a systematic error due to the violation of the WT identities has a simi-
lar order to the perturbatively estimated discretization effects. The difference due to the momentum
definition on the lattice is about 0.5% ofΠV+A(Q) that is negligible. The total discretization error
is thus estimated to be from+0.0004 to−0.0002 inαs(MZ).

The uncertainty in the quark condensate leads to−0.0001 decrease ofαs(MZ). The trunca-
tion effect of the perturbative expansion atO(α3

s ) is less than 1%, whose value is estimated by a
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Figure 2: Dependence of the minimum fit range for three parameter. The maximum value is fixed in
(aQ)2 ' 0.994, which is determined as explained in text. Open and filled symbols show the results with and
without the quark and gluon condensate terms.

comparison with lower loop order and four-loop order [18] for C0(Q2,µ2.αs) in the VPF formula.
Numerically it amounts to±0.0001in αs(MZ). There is an uncertainty in the mass dependence of
the renormalization constant, which is maximally 1% ofΠV+A(Q2). Total of those uncertainties,
i.e. truncation effect and renormalization constant, is estimated as±0.0001The uncertainties of
quark mass of charm and bottom used in the perturbative matching procedure give±0.0003error
to αs(MZ).

Table1 shows a summary of these systematic errors in our determination ofαs(MZ). Our
prelimimary result for the strong coupling constant at theZ boson mass scale is

αs(MZ) = 0.1181(8)(+4
−2)(

+5
−6), (4.1)

where the first and second errors are statistical error and systematic errors. This result is consistent
with the other lattice QCD result0.1170(12) [19] and the world average0.1176(20) [20].
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Table 1: Summary table of the systematic errors inαs(MZ) and their values.

Sources Systematic error inαs(MZ)
Discretization effect inΠV+A(Q2) +0.0002

∆V+A
µν ±0.0002

Momentum definition negligible
Quark condensate −0.0001
Truncation effects ±0.0001

Renormalization constant ±0.0001
Uncertainties ofmc,b ±0.0003
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