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We show a lattice determination of the strong coupling consta(ilz) from the vacuum po-
larization function (VPF) calculated dd; = 2+ 1 QCD gauge configurations generated by the
JLQCD and TWQCD collaborations with dynamical overlap fermions. Fitting lattice data of VPF

to a perturbative formula supplemented by the operator product expansion (OPE), we determine

the parametef\%. Evolving the running coupling constant to tAdoson mass scale, we obtain

as(Mz) = 0.1181(8)(51)@2) as our preliminary result, where the first error is statistical one, and

the second and third errors are systematic errors due to discretization effect and other remaining

uncertainties in this calculation.
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1. Introduction

Lattice QCD provides a natural framework to calculate the vacuum polarization functions
(VPFs). In fact, the VPFs in the vectdvV) and axial-vector &) channels can be extracted from
two-point correlation function with space-like momentum insertions, which cover the the energy
region from zero to the lattice cutoff. Our recent stutlyipn N = 2 QCD proposed to use VPFs to
determine the strong coupling constant by matching them with the perturbative calculations. This
method gives a consistent result with in other lattice calculationg at 2 [2,3]. We extend this
study to the realisti@ + 1-flavor QCD with dynamical light and strange quarks and determine the
strong coupling constant through OPE formula including terms up to a mass dimansinOne
of the advantages of our approach is that we can use the gauge configurations already produced
for spectrum studies. Another advantage is that the finite size correction is under control, since we
consider physical observables at short distances. A similar strategy was also propdkexdhith
considers the quarkonium two-point function instead.

Simulations are carried out on tihg = 2+ 1 dynamical overlap fermion configurations gen-
erated by the JLQCD and TWQCD collaborations. Sea quark masses in lattice urats,gre
0.015, 0.025, 0.035, and 0.050 for the up and down quarksaagd 0.08, 0.10 for the strange
quark B]. The valence light quark masses are set to be equal to the sea quark masses. The set of up
and down quark masses covers the range ohg-Q.8ms, while the set of the strange quark mass is
close to its physical value. The inverse lattice spaciray fs= 1.83 GeV, which is obtained from
the static quark potential witty = 0.49fm, and lattice volume i46° x 48. The physical volume is
thus about1.8 fm)3. Topological charge of our configurations is fixed to zero, but this only gives
small finite size effects to long distance physi6k We expect that this gives negligible effects to
the short distance physics as considered in this work.

2. Lattice calculation of vacuum polarization functions

In the continuum theory the transverfef]]()) and longitudinal r(15°)) parts of VPF are defined
through the two point correlation function of vectdr=€ V) and axial-vectorJ = A) currents,

(3,30)(0) = (Buv P — Auay) N5 (@) — g (P (2.1)

with four-dimensional momentum after a Fourier transformation. The longitudinal part in the

vector channel vanishd@f,o)(qz) = 0, while in the axial-vector channel it is proportional to the

guark mass. The above parameterization respects the Ward-Takahashi (WT) identity.
Defining M;(c?) = N'Y (6?) + N{Y (¢?), the perturbative expansion of VPF 1By, a(q?) =

My (g?) +Na(g?) in theMSscheme is generally given by

e (Q?)

QZ

{(as/mGG)
Q*

with analytic functions(:XJrA (X=0, qg, andGG) and vacuum expectation values of operators up
to dimension 4. The first termin (2.2) is a scheme-dependent constant and does not contribute

My alper(Q?, as) = c+CY "AQ?, 12, as) +CYA(Q?, 1, as)

+ Y U@, a9 ™MD | NP o +0(Q9(22)
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to the Adler functionQ?drn/dQ?, which is a physical observable. The second and third terms are,
on the other hand, scheme independent and perturbatively calculated at three loop ordstSn the
scheme@,10,11]. The third term contains the running masg Q?) [12,[13]. The fourth and fifth
terms correspond to higher order effects in OPE. The Wilson coefficients are calculated at three-
loop order [L2]. An important fact is that once the divergence of the current is renormalized, the
perturbatively calculated VPFs must be equivalent among different renormalization scheme up to
neglected higher order terms except for the scheme dependent constantTaimalso applies to
the VPF obtained from lattice calculation when the chiral symmetry is exactly preserved. At finite
lattice spacings, there are discretization effect®@?Q?) which can be extrapolated away towards
the continuum limit. It should be noted that the exact chiral symmetry of the overlap fermion partly
eliminate the unphysical terms 6faQ?) to satisfy the WT identities. We therefore uge2j to
fit VPF. This is important to reduce the systematic errors and obtain a precise vatyelnfour
previous study ilNs = 2 QCD [1], we had to use more complicated method to extract the physical
VPFs, because we used non-conserving (aixal-)vector currents. (Also, see below.)

With the overlap fermion formulation, the conserved vector current has a complicated form.
By generally writing in a bilinear fornv,(x) = ¥,,q(w)Ky(w,z|x)q(z) with a non-local kernel
Ky (w,z|x), whereK, is determined such that it forms a Noether current of the overlap fermion
actionS= ¥, ,q(x)Dov(X,y)d(y) under a local vector transformatioi]{ The flavor non-singlet
conserved vector and axial-vector currents are thus written as

Vacv Zq T2y (W, Z|x)q(2), Aac" Zq )T (W, Z|X) [160] (2), (2.3)

whereT? denotes the generator 8J(Nt) andys(x,y) = y5(3y — Dov(X,y)/mMp) with mp = 1.6.

In this study we consider the two point correlation function of conserved and local currents,
(T{IZ(x)3°(0)}), whereJ2¢ is eitherV/*°(x) = Zq(x)yua(x) or ASE(x) = Zq(x)yusa(x). The
renormalization constaitt is determined through the RI/MOM schemezas- 1.39[8]. The WT
identities in the momentum space are then written as

ZQH (VEVI)(Q) ZQM (AYAY)(Q) — 2my (PAY®) (Q) + (BaAY®) =0. (2.4

with a lattice momenturtﬁu = 2sin(aQy /2)e"12Qu/2 which corresponds to a backward derivative
operator an@Qy = 2rm, /L, with L;,—1..4 the extent of the lattice in the-th direction. The second

term for the axial-WT identity inZ.4) represents the correlation function of pseudo-scalar operator
P(x) = q(x)y5(1— Doy/mo)q(X) and the local axial-vector current. The third term is an extra contact
term, which is a constant in the momentum space, derived from the axial transformati§haf

the lattice . This term vanishes in the massless limit, and its magnitude is negligibly small. Vector
and axial-vector VPFs are now given by

(3I239°)(Q) = (3O - §;)NY(Q) - §;0,NV(Q) +4%,(Q). (2.5)

Here, I'I\(,O)(Q) = 0 because of the conserved current, wrﬁilg)(Q) represents a remnant due to
PCAC. The transverse pa'ntgl)(Q) is extracted as

NP (Q) = (3599%(Q) /(197 - §;4,). (2.6)
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The additional terrmfw(Q) comes from the violation of the current conservation for the local
currentJ!oc, Af“,(Q) can be expanded in terms of smaf), as

Bu@ = (8w Qo™ ~1Qul™ Y QLQy ) Finr( Q). @7
mn=1 p
In this analysis we ignore this contribution to VPFs, because of its smallness in the a@)de 1,
and will later estimate associated systematic errors. ThelWPR(Q?) thus extracted in our lattice
calculations is plotted in Fidl. The statistical fluctuation is small enough to fit@$ dependence
and to extractrs.

3. Fit with the perturbative formula

Here we discuss a fit of the lattice VPF data to the OPE formula. In this analysis the renor-
malization scale is set tp = 2 GeV, though the final results should not dependomp to
higher order corrections. The gluon condensdte;/m)GG) is defined only through the per-
turbative expression like2(2) due to the renormalon ambiguit{4], and we treat{(as/m)GG)
as a free parameter to describe the associat€f correction. On the other hand, the quark
condensatéqq) is well-defined in the massless limit because there is no mixing with lower di-
mensional operators thanks to the exact chiral symmetry of the overlap fermion. Although it has
am/a’ divergence at finite quark masses, this gives a tiny correctio.(—0.2%) compared
to (mqq)/Q* at our value of lattice spacing. We therefore neglect this contribution. Then the
guark mass dependence mf/+A\pert(Qz), which consists of the third and fourth terms .4),
is determined bys only, once the quark condensate is determined elsewhere. The third term
is given bym(Q?) = Zn(2GeV)my x [M(Q?)/M(4GeV?)] with Zm(2GeV) ~ 0.833[15]. In the
fourth term, quark condensate is an input parametgy, = —[0.236(7)(+13) GeV|3, which is
taken fromN; = 2 hadron spectroscopyd§]. While the precise value of the quark condensate
obtained in[L6] has not been used here so far, this makes only a tiny difference to VPF since
CY (@2, as)(maa) /Q* s relatively small.

There are three unknown parametens(Q?), ¢ and ((as/m)GG), in the fit of VPF using
(2.2. The QCD scale’\% controls the running coupling constaag(Q?), which is evaluated
using a four loop order formulall]. Figurell shows a(aQ)? dependence oflyA(Q?) in a
window 0.4 < (aQ)? < 1.0. Fit curves shown in this plot ar2.g) with the value for the unknown
parameters extracted in the fit rar@yd63 < (aQ)2 <0.994

The upper limit is chosen to avoid significant lattice artifact, which is estimated by a difference
of the lattice momenturaQ, from another definitior2 sinaQ, /2). With a constrainaQ, < /4,
the results are unchanged withirollevel.

To determine the lower limit we investigate the stability of the fit results. Fi@upkots the
dependence of fit parameters on the lower limit. We observe that arf@®,, =0.4-0.5 all
parameters are stable. It turned out that the contribution of the higher order terms irl @PE,
is negligibly small around this region. In our study we &®)2. ~ 0.463 In order to investigate
where the quark and gluon condensate terms give significant contributions, we attempt a fit with
(2.2) but without the fourth and fifth terms(.aQ)ﬁ1in dependence fol\% is also given in Fig2
by filled circles. There is a significant deviation from the full analysis bela®)? = 0.48. This
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Figure 1. (aQ)? dependence of VPF)y a(Q), at all valence quark massesy, = 0.015 (circle), 0.025
(square)0.035 (diamond),0.050 (triangle). Top panel is a result g = 0.08; bottom is inmg = 0.1. Solid
lines show a fit function at each quark masses. Here we use a fit range determined as explained in a text.

implies that the contribution from the dimension-4 operators play an important r¢eQ)f <
0.48. The statistical error becomes small as the number of the fit parameters is reduced when we
use the leading term only, howevet become worse gg?/dof ~ 3.0 because the non-perturbative
quark mass dependence is not described by the perturbative function.

After doi(r;g a simultaneous fit of the VPF data at all sea quark massesg\ pfagameter is

obtained asz!\,vT)S = 0.247(11). At theZ boson mass scale the strong coupling constant is obtained

asas(Mz) =0.1181(8).

4. Systematic errors

We estimate the size of systematic errors in our results.

Discretization effect can be estimated using perturbation theory, as the effect is more im-
portant at large momentum region. We calculate the one loop diagram ofﬂ@“{F,(QZ), with
local and conserved currents in lattice perturbation theory. The result may be parameterized as
c—1/(2m)In(aQ)? + 0.0062aQ)? for smalla. The logarithmic term is the same as in the con-
tinuum perturbation theory arglis the scheme dependent constant as already noticed. The term
0.0062aQ)? comes from the discretization effect. By subtracting this term from the lattice data
the final result foras(Mz) changes by-0.0002in o (M), which gives a conservative estimate of
the leadinga? effects. Other discretization error may come from the non-consedifif@s given
in (2.7). The maximum magnitude V1+A(Q) in (2.7) is less than 1% ofly +A(Q) in the fit range
0.463< (aQ)2 <0.994. Thus a systematic error due to the violation of the WT identities has a simi-
lar order to the perturbatively estimated discretization effects. The difference due to the momentum
definition on the lattice is about 0.5% B, A(Q) that is negligible. The total discretization error
is thus estimated to be from0.0004 to—0.0002 inag(Mz).

The uncertainty in the quark condensate leads @0001 decrease a@fs(Mz). The trunca-
tion effect of the perturbative expansionéta?) is less than 1%, whose value is estimated by a
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Figure 2: Dependence of the minimum fit range for three parameter. The maximum value is fixed in
(aQ)? ~ 0.994, which is determined as explained in text. Open and filled symbols show the results with and
without the quark and gluon condensate terms.

comparison with lower loop order and four-loop ord&g]|[for Co(Q?, u?.as) in the VPF formula.
Numerically it amounts ta-0.0001in as(Mz). There is an uncertainty in the mass dependence of
the renormalization constant, which is maximally 1°/d'b,f+A(Q2). Total of those uncertainties,
i.e. truncation effect and renormalization constant, is estimatetd(88001 The uncertainties of
guark mass of charm and bottom used in the perturbative matching procedureCgd@®3error
to as(Mz).

Tablelll shows a summary of these systematic errors in our determinatiog(bfz). Our
prelimimary result for the strong coupling constant atZh@oson mass scale is

as(Mz) = 0.1181(8)(*3)(*3). (4.1)

where the first and second errors are statistical error and systematic errors. This result is consistent
with the other lattice QCD result1170(12) [19] and the world average.117620) [20].
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Table 1: Summary table of the systematic errorig{Mz) and their values.

Sources Systematic error imrs(Mz)
Discretization effect irfly a(Q?) +0.0002
AR +0.0002
Momentum definition negligible
Quark condensate —0.0001
Truncation effects +0.0001
Renormalization constant +0.0001
Uncertainties ofng 4+0.0003
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