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We present an evaluation of the running coupling constant and the quark mass renormalization
factor for N f = 2+1 QCD. The Schrödinger functional scheme is used as the intermediate scheme
to carry out non-perturbative running from the low energy region, where physical input is intro-
duced, to deep in the high energy perturbative region, where conversion to the MS scheme is
safely performed.
For numerical simulations we adopted Iwasaki gauge action and non-perturbatively improved
Wilson fermion action with the clover term. Seven renormalization scales are used to cover from
low to high energy region and three lattice spacings to take the continuum limit at each scale.
Physical inputs are introduced from the previous N f = 2+1 simulation of the CP-PACS/JL-QCD
collaboration, which covered the up-down quark mass range heavier than mπ ∼ 500 MeV, and
that of PACS-CS collaboration for much lighter quark masses down to mπ = 155 MeV.
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1. Introduction

The strong coupling constant and quark masses constitute the fundamental parameters of the
Standard Model. It is an important task of lattice QCD to determine these parameters using inputs
at low energy scales such as hadron masses, meson decay constants and quark potential quantities.
The results can be compared with independent determinations from high energy experiments.

In the course of evaluating these fundamental parameters we need the process of renormaliza-
tion in some scheme. The MS scheme is one of the most popular schemes, and hence one would
like to evaluate these parameters through input of low energy quantities on the lattice and convert it
to the MS scheme. A difficulty in this process is that the conversion is given only in a perturbative
expansion, and should be performed at high energy scales much larger than the QCD scale. At the
same time the renormalization scale µ should be kept much less than the lattice spacing to reduce
lattice artifacts, namely we require ΛQCD � µ � 1/a. A practical difficulty of satisfying these
inequalities in numerical simulations is called the window problem.

The Schrödinger functional (SF) scheme [1, 2, 3, 4, 5] is designed to resolve the window
problem. It has an advantage that systematic errors can be unambiguously controlled. A unique
renormalization scale is introduced through the box size L. A wide range of renormalization scales
can be covered by the step scaling function (SSF) technique. The SF scheme has been applied for
evaluation of the QCD coupling and the quark mass renormalization factor for N f = 0 [2, 3] and
N f = 2 [4, 5].

At low energy scales of µ ∼ 500 MeV, where physical input is given, we expect the strange
quark contribution to be important in addition to those of the up and down quarks. Thus the aim
of this proceeding is to go one step further and evaluate the strong coupling constant and the quark
mass renormalization factor in N f = 2 + 1 QCD. For setting the physical scale we employ two
recent large-scale N f = 2+1 lattice QCD simulations employing non-perturbatively O(a) improved
Wilson quark action [6, 7].

Our goal is to evaluate the running coupling constant αs(MZ) and the renormalization group
invariant (RGI) quark mass M. The evaluation of αs(MZ) has been performed in Ref. [8], where one
finds detailed explanation. The objective for the quark mass is to derive a renormalization factor
ZM(g0), which converts the bare PCAC mass at bare coupling g0 to the RGI mass. The derivation
proceed in the same steps as Ref. [3, 5], which we omit in this proceeding.

2. Step scaling function

We adopt the renormalization group improved gauge action of Iwasaki and the improved Wil-
son fermion action with clover term, whose improvement coefficient cSW is given non-perturbatively
[8]. The twisted periodic boundary condition is set for the fermion field in the three spatial di-
rections with θ = π/5 for the coupling constant and θ = 0.5 for the pseudo scalar density. We
adopted two different SF boundary conditions when evaluating the coupling constant [2, 4] and for
the pseudo scalar density renormalization factor [3, 5].

We adopt seven renormalized coupling values to cover weak to strong coupling regions. For
each coupling we use three boxes L/a = 4,6,8 to take the continuum limit. For three lattice sizes
the values of β and κ are tuned to reproduce the same renormalized coupling keeping the PCAC
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Figure 1: Polynomial fit of discrepancy Σ(u,a/L)/σ (3)(u) (upper three figures) and ΣP (u,a/L)/σ (3)
P (u)

(lower) at high β & 4. The fit is given for each lattice spacings a/L = 1/4 (left), a/L = 1/6 (middle) and
a/L = 1/8 (right). Black dotted line is a perturbative one loop behavior and red solid line is a quadratic fit.

mass to zero. On these parameters we evaluate the coupling constant g2(L), g2(2L) and the renor-
malization factor ZP(g0,L/a), ZP(g0,2L/a). Tiny deviations in the renormalized coupling g2(L)
and the PCAC mass are corrected perturbatively [9] and we have the SSF’s on the lattice.

We perform a perturbative improvement of the SSF before taking the continuum limit, for
which we need an evaluation of the lattice artifact δ(P)(u,a/L) = (Σ(P) (u,a/L)−σ(P)(u))/σ(P)(u).
Although δ (u,a/L) is evaluated at one loop level its value is rather large and is shown to be ap-
plicable only for very weak coupling region [8], which reveals importance of two loop coefficient.
On the other hand δP is not known for our setup. Instead of calculating δP and δ at one/two-loop
level perturbatively we calculate SSF’s directly by Monte-Carlo sampling at very weak coupling
β ≥ 10. We define δ(P)(u,a/L) by a deviation from the perturbative SSF’s σ (3)

(P) at three (two) loops
order [9]. The deviation is fitted in a polynomial form for each a/L,

1+δ(P)(u,a/L) = 1+d(P)
1 (a/L)u+d(P)

2 (a/L)u2. (2.1)

We tried a quadratic fit using data at u ≤ 1.524, which is plotted in Fig. 1. The one loop coefficient
d1(a/L) is fixed to its perturbative value for the coupling SSF.

Since the quadratic fit provides a reasonable description of data we opt to cancel the O(a)
contribution dividing out the SSF by the quadratic fit. On the other hand the deviation is consistent
with zero within one standard deviation for δP(u,1/8) at u & 1 we do not apply an improvement
for this case.

Scaling behavior of the improved SSF is plotted in Fig. 2 for the coupling constant and in
Fig. 3 for the pseudo scalar density. Almost no scaling violation is found. We performed three
types of continuum extrapolation: a constant extrapolation with the finest two (filled symbols) or all
three data points (open symbols), or a linear extrapolation with all three data points (open circles),
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Figure 2: The SSF of the coupling constant with its continuum extrapolation at each renormalization scale
(left). Right panel is a RG flow of the SSF. Dotted line is three loops perturbative running. Solid line is a
polynomial fit.
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Figure 3: The SSF for the pseudo scalar density (left). RG flow of the SSF (right).

which are consistent with each other. We employed the constant fit with these two data point to
find our continuum value. The RG running of the continuum SSF is plotted in the same figure at
right panel. The fitting functions

σ(u) = u+ s0u2 + s1u3 + s2u4 + s3u5 + s4u6, (2.2)

s2 = 0.002265, s3 = −0.00158, s4 = 0.000516, (2.3)

σP(u) = 1+ p0u+ p1u2 + p2u3, (2.4)

p1 = −0.002861 p2 = 0.000093. (2.5)

are also plotted (solid line) together with the three/two loops perturbative running (dashed line),
where s0, s1 and p0 are set to their perturbative values.

3. Introduction of physical scale

CP-PACS and JLQCD Collaborations jointly performed an N f = 2 + 1 simulation with the
O(a) improved Wilson action and the Iwasaki gauge action [6]. Three values of β , 1.83, 1.90 and
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2.05 were adopted to take the continuum limit and the up-down quark mass covered a rather heavy
region corresponding to mπ/mρ = 0.63−0.78. This project has been taken over by the PACS-CS
Collaboration aiming at simulations at the physical light quark masses [7], where results at a single
lattice spacing β = 1.90 is available with very light quark masses down to mπ/mρ ≈ 0.2.

We adopt those results to introduce the physical scale into the present work through the low
energy reference scale Lmax in MeV units. We employ the hadron masses mπ , mK , mΩ as inputs
and use the lattice spacing a as an intermediate scale.

We evaluate the renormalized coupling and the pseudo scalar density renormalization factor at
the same β in the chiral limit. The reference scale Lmax is given by the box size we adopt in this
evaluation. The renormalized coupling g2(Lmax) should not exceed our maximal value 5.13 of the
SSF very much. The values of the coupling constant and the renormalization factor ZP(Lmax) are
listed in Table 1.

β κ Lmax/a g2(Lmax) ZP(Lmax)
1.83 0.13608455 4 5.565(54) 0.57519(32)
1.90 0.1355968 4 4.695(23) 0.60784(27)
2.05 0.1359925 6 4.740(79) 0.56641(44)

Table 1: The renormalized coupling and the renormalization factor ZP at β = 1.83, 1.90, 2.05 to define the
reference scale Lmax.

We calculate the axial vector current renormalization factor according to the procedure in
Ref. [10, 11]. We adopt the renormalization condition [11], which is applicable to non-vanishing
PCAC mass, with connected diagrams only. The physical box size is fixed to approximately same
value L ∼ 0.75 fm. Since we did not find any significant θ dependence we evaluate the renormal-
ization factors at θ = 0.5. Preliminary results are listed in table 2.

β κ size mAWT ZV ZA

1.83 0.138466 63 ×18 −0.0003(19) 0.751(26) 0.965(23)
1.90 0.137556 83 ×18 0.00150(63) 0.7424(63) 0.8596(77)
2.05 0.136116 123 ×30 0.00291(38) 0.7717(41) 0.8117(54)

Table 2: The (axial) vector current renormalization factor at β = 1.83, 1.90, 2.05.

4. Strong coupling constant at MZ and RGI mass renormalization factor

We derive the strong coupling constant αs(MZ) and Λ(5)
MS

according to the procedure in Ref. [8].
The results are listed in Table 3. The error includes the statistical error of the renormalized cou-
plings in addition to the statistical error of the lattice spacing. The experimental errors of mc, mb

and MZ are also included. Preliminary results of the renormalization factor ZM for the RGI mass
are also given in Table 3 together with the mass renormalization factor ZMS

m (β ,µ = 2 GeV) in the
MS scheme.
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β αs(MZ) Λ(5)
MS

(MeV) ZM ZMS
m (2 GeV)

1.83 0.1208(13) 243(17) 2.084(55) 1.616(41)
1.90 0.1206(14) 240(18) 1.870(25) 1.446(17)
2.05 0.1198(16) 231(20) 1.888(26) 1.446(15)
1.90 0.1225(14) 266(20) 1.870(25) 1.484(18)

Table 3: The strong coupling αs(MZ) and the RGI scale Λ(5)
MS

for five flavors. Also listed are preliminary

results of ZM for the RGI mass and ZMS
m in the MS scheme. The last row for β = 1.90 is given by an input

from Ref. [7].

As the last step we take the continuum limit using the three lattice spacings from Ref. [6].
The scaling behavior of αs(MZ) and Λ(5)

MS
is plotted in Fig. 4 together with that from latest input

[7]. Two results agree with each other at the same β = 1.90. We tested three types of continuum
extrapolation, which agree with each other and we adopt the constant fit with three data points for
our final results:

αs(MZ) = 0.12047(81)(48)(+0
−173), Λ(5)

MS
= 239(10)(6)(+0

−22) MeV, (4.1)

where the first parenthesis is statistical error and the second is systematic error of perturbative
matching of different flavors. The last parenthesis is a difference between the constant and a linear
extrapolation and is a systematic error due to finite lattice spacing for physical inputs.

The results from the physical inputs of our latest Ref. [7] are given by

αs(MZ) = 0.1225(14)(5), Λ(5)
MS

= 266(20)(7) MeV. (4.2)

Difference between the two physical inputs may reflect mainly a systematic error due to chiral
extrapolation toward light quark masses, with the assumption the scaling violation is small also in
the latter case.

We also plot preliminary scaling behavior of the light quark masses renormalized at µ = 2
GeV in MS scheme together with perturbatively renormalized masses [6].

5. Conclusion

We have presented a calculation of the running coupling constant and the quark mass renor-
malization factor for the N f = 2+1 QCD in the mass independent Schrödinger functional scheme
in the chiral limit. With the “perturbative” improvement the SSF’s shows good scaling behavior
and the continuum limit seems to be taken safely with a constant extrapolation of the finest two
lattice spacings.

With the non-perturbative renormalization group flow we are able to estimate αs(MZ) and the
quark mass renormalization factor with some physical inputs for energy scale. The physical scale
is introduced from the recent spectrum simulations [6, 7] through the hadron masses mπ , mK , mΩ.
Our coupling constant (4.1) in the continuum limit is consistent with recent lattice results and the
Particle Data Group average αs(MZ) = 0.1176(20).
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Figure 4: Scaling behavior of αMS(MZ) (upper left) and Λ(5)
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