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1. Introduction

The lattice provides a very elegant way of calculating reradized observables. In this frame-
work several methods are known to extract the running of t8®@Qoupling constant, which allows
for the determination of the QCD scalkgcp and for the study of infrared properties. In the case
of quenched world the mismatch between the perturbativeimgrand the lattice one has revealed
the presence of a non-null gluon condensate of dimensioth&atpbeing non-gauge invariant, has
motivated the research of its possible implications forghege-invariant world.

In this note we apply the already established method¥Nfoe 2 dynamical quarks, includ-
ing light up and down quarksN; = 2+ 1+ 1 lattice simulations are already being performed,
thus a realistic lattice estimate 6f;s directly comparable with experimental results will become
inmediatly accesible.

In particular here we focus on the study of the ghost-gluoriexein the configuration of
vanishing incoming ghost-momentum. Only in this case thesggluon vertex can be related
directly to the bare and ghost propagators, making caloalasimpler.

2. Taylor scheme

2.1 Definitions

In [1] was shown that the so-called Taylor scheme is the onb/where the coupling can be
cumputed from two-point Green functions, due to Taylorsaitem. We write Landau gauge gluon
and ghost propagators as:

ab G(p*,A) PuPp
(G<2>) (P2A) = 5 G G- ‘QZV ,

uv

2
Ry (2.1)

with A the regularisation cutoff. The renormalized dressing fions, Gr and Fr are defined
through :

(FO)™ (02.0) = 6

Gr(p*,u?) = lim Zg*(u®,A) G(p*,A)
Fr(P?.H?) = lim ZyH (A F(P2A) (2.2)

N—00

with MOM renormalization condition

Gr(M?,p?) = Fr(p?,u?) = 1. (2.3)

Due to Taylor's non-renormalization theorem, the renoizeal coupling defined from the ghost-
gluon vertexwith a zero incoming ghost momentumcan be computed from ghost and gluon
propagators using:

L’,?G(uz,/\zwz(uz,/\z) : (2:4)

what has been called Taylbischeme [1]

IFrom now on, the quantities expressed in this scheme wity¢ae T index.
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2.2 Perturbation theory and OPE

The perturbative running aft is known up to four loops [2],

2 2 3
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1
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witht =1In K—z and the perturbative coefficients:
T
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— 304048 — 625387 N¢ + 19.3833N?

Bs = B3—2B,C1+ B1CE + Bo(2c3— 6 Cocy +4C3)
= 100541 — 244233 N; + 16254 Nfz — 27.493 qu’, (2.7)

The parameterBqcp in two schemes can be perturbatively related at high enémgyarticu-
lar, from theT-scheme tdVISthis relationship reads:

c1 507— 40N¢
Ao _1 T
MS _ e ZBO — e 792— 48Nf ] (28)
Nt
Following the Operatore Product Expansion (OPE) prograth gbost and gluon propagators
show the appearance of a non-perturbative power corredtiven by the non-gauge invariant
dimension-two gluon condensate (see [1], [3] and refeemritierein). Including power corrections
at tree-level in ghost and gluon dressing functions, onaeanite (2.4) as

2 (2 (A2
9 97 (G9) (AR
2 pert, 2 %
= 1+ =—— "0 2.9
whereq% > Nqcp is some perturbative scale and the running of the pertwbatart is described
by equation (2.5). This formula will be used for the data gsial in the next section that does
depend on two parameterSocp and (A?), that will be fitted.

3. Lattice setup and role ofH(4) orbits

The results presented here are based on the gauge field catifiga generated by the Euro-
pean Twisted Mass Collaboration (ETMC) with the tree-lengroved Symanzik gauge action [4]
and the twisted mass fermionic action [5] at maximal twigcdssed in detail in refs. [6]- [9].
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We preliminarly exploited 100 ETMC gauge configurationsamitd for3 = 3.9 (u = 0.0085),
60 for B = 4.05 (u = 0.006) and 100 fop} = 4.2 (u = 0.002) simulated on #4x 48 lattices, corre-
sponding td\; = 2 in order to compute the gauge-fixed 2-point gluon and ghoséifunctions.
For fixing Landau gauge in the lattice we minimise the funwio

Fuld —ReY ¥ (1 Ga0oU (a0t w) ) @Y
X ‘m

respect to the gauge transfognGhost propagator is computed in Landau gauge as the inwérse
the Faddeev-Popov operator, that is written as the latfi@rgence,

Mw):—%uﬁw) (3.2)

where the operatdD acting on an arbitrary element of the Lie algebyaeads:

DU)N(x) = % (U (9N (x4 1) = (U (X) + 1 (x+ UL = ufi (90 (x)) - (3.3)

More details on the lattice procedure for the inversion addesev-Popov operator can be found
on [10].

As we intend to fit the running afs, our interest is to have, on one hand the highest momenta
accesible and, on the other the highest number of data pwimgerform the fit. When working
at a given lattice spacing, the momentum window has to bediniue to the presence of high
discretization errors. These lattice artifacts are dudéobireaking of the rotational symmetry of
the euclidean space-time when using an hypercubic latticere this symmetry is restricted to the
discrete H(4) isometry group. These artifacts can be ithtistl as the difference between the lattice
momenta,

1.
Py = asmap“ (3.4)
and the continuum ones,
2m
= — =0,1,--- N. 3.5
pIJ Na n ) == ’ ( )

Clearly these two momenta will differ except in the limjtN — 0. Following what was recently
discussed in [11] and [12], let us consider an adimensiattité correlation functio that de-
pends on the lattice momentuaf, and some mass scadé\: Q = Q(a?p?,a?A?) . The lattice
momentum can be developed as:

a’pp = alps +c@tpl + - (3.6)

with c¢; a constant that depends on the discretization chosen. Then:

a2 ﬁZ

4 [4]
Y &ph =apP+calp 4. =ap <1+cla2F;—2 * ) G
u=1
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wherep = 54_; pi}. If the lattice spacing is smalk, = a®p¥l /p* << 1 and we can develoR in
powers ofe:

4
Q@pG,a°N%) = Q <a2|o2 <1+ claz%z +- ) ,azf\2> (3.8)
d [4]
= Q(a?p?,a’A?) + d—g E_oazr;—z SR (3.9)

H(4) methods are based on the appearance 6f(@) corrections driven by /¥ term. The
basic method is to fit between the whole set of orbits shahirgsamep? the coefficieniR and the
extrapolated value d free from H(4) artefacts. In particular we assumed that tedficient

dQ(a?p?(1+cie+---),a%N?)
de

R(@p? a°N?) =

=0

has a smooth dependence @p? over a given momentum window. This can be achieved by
developingR asR = Ry + Rya?p? and making a global fit in a momentum window betwéen-

0, p+ d) to extract the extrapolated value Qffor the momentunp and shifting the window for
every lattice momentum. This procedure of fitting is someldifferent from the previous one,
since the extrapolation does not rely on any particularrapsion for the functional form oR. On

the other, the systematic error coming from the extrapmiatian be estimated by modifying the
width of the fitting window.

4. Results

4.1 Calibration of lattice spacings

The running ofar given by the combination of Green functions in eq. (2.4) ddegend
in principle on the momentum and the cut-off. Nevertheldsse are not far from the continuum
limit, and discretization errors are treated properly,dbepling will depend only on the momentum
(except, maybe, finite volume errors at low momenta).

The procedure to compute the ratio of lattice spacings is #teightforward: it can be ob-
tained by requiring the estimates @f for two different simulations (two differerf’s) to match
properly each other. This method has proven to be succaagfulenched lattice simulations [1],
with a deviation with respect to usual Sommer parametemestis lower than 5%.

TheN; = 2 results can be seen in figure 4.1, where the lattice spagirigd lower (3 = 3.9)
has been assumed to coincide with the one given in [6] andittes two, for3 = 4.05 andB = 4.20
are fitted to match the data.

The deviations are found to be smaller than 5% (see Tab. &s1i) the quenched case. This
deviation might be a signal of discretization errors stikgent at thes@’s. Another source of
discrepancy could be a possible dependence of results quérk masses. Further efforts should
be done in this sence.
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This paper| Sommer scale deviation (%))
a(3.9)/a(4.05 | 1.223(3) 1.277 4.2
a(3.9)/a(4.2) 1.503(5) 1.547 29

Table 1: Best-fit parameters for the ratios of lattice spacings. Tharés purely statistics.
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Figure 1: QCD coupling defined by from the three lattice data sets eysglored squares stand fBr= 4.2,
green ones fo8 = 4.05 and blue fo8 = 3.90. Right (left) plot shows estimates for momenta aboveoflag!
10 Ge\2. The physical value (iGeV) of the momentum irx-axis is obtained by applying the ratios of
lattice sizes in tab.1 ara{3.9)~1 = 2.301GeV.

4.2 Nys and (A?) condensate

The value of/Ayg can be obtained by inverting (2.5) for the lattice valuesogfobtained
from the lattice for each momentum. When done (figure 2) theegaof Ays obtained have a
strong dependence on the momentum, showing the presenoeefron-perturbative effects not
taken into account in (2.5). The values/gfs are around 326 360MeV, much higher than other
estimations.

The first non-perturbative correction that does appear urlaa gauge is thgA?) gluon con-
densate, whose effects on the running coupling are includé2l9). The values o\ and (A?)
can be simultaneously fixed from lattice data using, for gdemthe “plateau” method, shown
in [1]. It consist in varying the value of the condensate tklfor a “plateau” in/\y5 over a given
momentum window.

In fig. 2, we also plot\ys derived from confronting the lattice value afr with the pertur-
bative+OPE prediction, in terms of the momentum wheteis estimated from the lattice. The

application of the “plateau” method allows us to get as a bstinate:
Nys = 267£11MeV; (4.1)

where again the error takes into account no systematictefécs result is in good agreement with

other estimations in litteraure [13]- [15]. The value of r(m?> obtained is
o (M) ,=9.6E 0.6Ge\? (4.2)

which shows a significant increase respect to previous duaehestimates [1].
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Figure 2: \yg derived from fitting the lattice value afy with the perturbative+OPE prediction, in terms of
the momentum wheret is estimated from the lattice, as described in ref. [1].

5. Conclusions and outlooks

We calculated the running coupling in the Taylor scheme With= 2 flavours of dynamical
guarks. We found that the matching of the results obtainedifterent 3’s allows to compute the
ratio of lattice spacings, with a deviation with respectte string tension always smaller than 5%.

By comparing the lattice result with the expectation comiram perturbation theory, we
found the need for a dimension-two gluon condensate asseddia a non-perturbative power cor-
rection. Including this term allows for an agreement betwegtice and continuous formulae and
then the extraction of the scaﬁé\lﬂfgz. Our result is in agreement with previous determinations.

The application of this method is straightforward for a Eghumber of quark flavours and
might be used in forthcominlys = 2+ 1+ 1 lattice simulations.

As an outlook, we are interested in checking the mass-depeedof our results. In particular
two effects are to be expected. The first one, at the levekoddtibration, could show a dependence
of the lattice spacing both o and . In any case this should not affect our results. The second
one could be the effect of the mass on the coupling, which sderhe rouled out because of the
good overlap of the coupling already observed at diffepent
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