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rana fermions with chiral Yukawa couplings is subject to topological obstructions. In the present

work we suggest lattice extensions of charge and parity transformation for Weyl fermions. This

enables us to construct lattice chiral gauge theories that are CP invariant. For the construction

of Majorana-Yukawa couplings, we discuss two models with symplectic Majorana fermions: a

model with two symplectic doublets, and one with an auxiliary doublet.
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1. Introduction

Despite the considerable success in the formulation of chiral symmetry on the lattice [1, 2,
3, 4] based on the Ginsparg-Wilson relation, there remain several unsolved problems. One of
them concerns the construction of CP invariant chiral gauge theories on the lattice [5, 6]. Another
problem concerns the definition of Majorana fermions in the presence of Yukawa couplings [7, 8].
These problems are closely related to the requirements of locality and of avoiding species doublers,
which are basic issues for chiral symmetry on the lattice. Loosely speaking, the above problems
relate to the fact that chiral symmetry for a lattice Dirac actionψ̄Dψ with Ginsparg Wilson Dirac
operatorD requires an asymmetric treatment ofψ andψ̄. In turn, CP symmetry and Majorana-
Yukawa couplings require a symmetric treatment ofψ andψ̄.

In this paper, we put forward possible solutions to these problems. We first discuss the obstruc-
tions in constructing lattice chiral gauge theories with CP invariance. Due to the Nielsen-Ninomiya
no-go theorem [9, 10, 11, 12], consistent chiral projection operators necessarily depend on the
Dirac operator, see e.g. [16]. It is natural to assume that the modified chiral symmetry on the
lattice induces modifications of charge and parity transformations on the lattice. Here we define
lattice extensions of charge and parity transformations for Weyl fermions [13] that explicitly de-
pend on the chiral projection operators. This will be legitimate because CP is a discrete symmetry,
and enables us to show CP symmetry in chiral gauge theories. We then construct Majorana-Yukawa
actions by employing symplectic Majorana fermions. In addition to the model with two symplec-
tic doublets discussed in [13, 14], we also construct a model with an auxiliary symplectic doublet
following the idea given in [4, 15].

2. Obstructions in showing CP invariance of chiral gauge theory

Let us consider the lattice action of a chiral gauge theory,

SCGT = ∑
x,y∈Λ

ψ̄(x)
(1− γ5

2

)
D(U) (x−y)

(1+ γ̂5

2

)
ψ(y) , (2.1)

where the Dirac operatorD(U) with link variablesU is used to definêγ5 = γ5(1−aD(U)). With
these definitions the GW relation reads,

γ5D(U)+D(U)γ̂5 = 0. (2.2)

The standard CP transformation is an operation

ψ →−W−1 ψ̄T , ψ̄ → ψT W , (2.3)

whereW = CP is product of the parityP = γ4 and the charge conjugation matrixC satisfies

Cγµ C−1 =−γT
µ , C C† = 1, C =−CT . (2.4)

The CP transformation (2.3) is not an invariance of the action (2.1), simply because

Wγ5 W−1 =−γT
5 6=−γ̂T

5 . (2.5)
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We observe, however, that the action (2.1) would be CP invariant with the standard parity transfor-
mation if the charge conjugation mapsγ5 to γ̂T

5 . Therefore, one may construct a lattice extension
of the charge conjugation matrix,Ĉ, which satisfies

Ĉγ5 Ĉ−1 = γ̂T
5 . (2.6)

A solution to this equation is given bŷC = C (1−aD/2), which vanishes forD = 2/a. Indeed,
any attempt of constructing smooth mappings between two different types of chiral projection
operatorsP = (1+ γ5)/2 andP̂ = (1+ γ̂5)/2 fails. This can be understood as follows: For general
chiral projection operatorsP andP̂ satisfying

(1−P)D = DP̂, (2.7)

it has been shown in [16] that the projection operatorsP and P̂ carry a winding number that is
related to the total chiralityχ of the system at hand,

χ = n[P̂]−n[1−P] , with n[P]≡ 1
2!

(
i

2π

)2∫

T4
trP(dP)4 . ∈ Z . (2.8)

Eq. (2.8) therefore entails that for odd total chirality, e.g. a single Weyl fermion,P̂ψ andψ̄ P live
in topologically different spaces. Hence there are no smooth mappings connecting them. Note that
this theorem applies to a wide class of Dirac operators including Ginsparg-Wilson Dirac operators
as a special case.

3. Lattice extension of C and/or P transformation

The absence of smooth mappings between the two spaces specified byP̂ψ andψ̄ P may not
be a problem, because CP is a discrete symmetry. We conclude that we simply have to include the
chiral projection operators in the definition of C and/or P transformation. Consequently we define
a lattice extension of charge conjugation for Weyl fermions [13]:

ψ̄(x)
(1± γ5

2

)
→ ∑

y∈Λ
ψT(y)C

(1± γ̃5(UC)
2

)
(y,x)

∑
y∈Λ

(1± γ̂5(U)
2

)
(x,y)ψ(y)→−

(1± γ5

2

)
C−1ψ̄T(x) ,

whereγ̃5 = (1−aD(U))γ5. For link variableU , we use the standard C and P transformations:

Uµ(x)→UC
µ (x) =

(
U†

µ
)T(x)

Uµ(x)→UP
µ (x) =

{
U†

i (xP−aî) f or i = 1,2,3.

U4(xP)
(3.1)

We also use the standard parity transformation for spinors

ψ(x)→ ψP(x) = P−1ψ(xP), ψ̄(x)→ ψ̄P(x) = ψ̄(xP)P. (3.2)
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Using (3.1) and (3.2), we obtain the relations

CD(UC)C−1 =
(
D(U)

)T

PD(UP)P−1(x,y) = D(U)(xP,yP) . (3.3)

It is straightforward to show CP invariance of (2.1),

ψ̄(1− γ5)D(U)(1+ γ̂5)ψ
C−→−ψTC(1− γ̃5(UC))D(UC)(1+ γ5)C−1ψ̄T

= ψ̄(1+ γ5)D(U)(1− γ̂5(U))ψ
P−→ ψ̄(1− γ5)D(U)(1+ γ̂5(U))ψ . (3.4)

Some remarks are in order:

(1) Performing the charge conjugation (3.1) twice, one finds

ψ̄(1+ γ5)/2→ ψ̄(1+ γ5)/2, (1+ γ̂5)ψ/2→ (1+ γ̂5)ψ/2, (3.5)

as it should be.

(2) In the continuum limit, the charge conjugation (3.1) tends towards the standard one,

ψ →−C−1 ψ̄T ψ̄ → ψT C. (3.6)

(3) For the functional measure introduced by Lüscher,

DψDψ̄ = ∏
j
(dcjdc̄ j)

ψ(x) = ∑
j

v j(x)c j , ψ̄(x) = ∑
j

v̄ j c̄ j

(
1+ γ̂5

2

)
v j = v j , v̄ j

(
1− γ5

2

)
= v̄ j , (3.7)

a CP transformation with (3.1) acts asc j ⇔ c̄ j , and thereforeDψDψ̄ remains invariant.

In the construction put forward above we have modified the charge conjugation. Alternatively we
could use the standard charge conjugation while modifying the parity transformations for Weyl
fermions:

(
1± γ5

2

)
ψ(x)→ P−1 ∑

y∈Λ

(
1∓ γ̂5(U)

2

)
(xP,yP)ψ(yP)

∑
y∈Λ

ψ̄(y)
(

1± γ̃5(U)
2

)
(y,x)→ ψ̄(x)

(
1∓ γ5

2

)
P. (3.8)

The modified CP-transformations with (3.8) are an invariance of the theory.
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4. Majorana fermions and Yukawa couplings

Majorana spinors are defined by imposing a reality condition withB = γ5C,

ψ∗ = Bψ ⇒ ψ∗∗ = B∗Bψ . (4.1)

For four dimensional Euclidean space, we haveB∗B =−1 which leads toψ∗∗ = −ψ. Therefore,
there are no Majorana spinors satisfying the reality constraint [17, 18]. This difficulty can be
circumvented by doubling the fermions and implementing a symplectic Majorana condition

ψ∗
1 = B ψ2, ψ∗

2 =−B ψ1

⇒ ψ∗∗
a = εabB

∗ψ∗
b = εabεbcB

∗Bψc = ψa (a,b = 1,2) . (4.2)

On the lattice, a further doubling of degrees of freedom is needed for a chirally invariant theory
with GW Dirac operatorD [13, 14]. Introducing symplectic pairs of Majorana spinors,(Ψ1,Ψ2)
and(ψ1,ψ2), we construct a chiral Yukawa theory:

S = S0 +SY

S0 = ∑
(
ψT

1 CDΨ1 +ψT
2 CDΨ2

)

SY =
g
4 ∑

[{
ψT

1 C(1+ γ5)ϕ(1+ γ̂5)Ψ1

+ψT
1 C(1− γ5)ϕ∗(1− γ̂5)Ψ1

}
+

{
1→ 2

}]
. (4.3)

The action is invariant under the chiral transformations

δψ1 = iεγ5ψ1, δψ2 =−iεγ5ψ2

δΨ1 = iεγ̂5Ψ1, δΨ2 =−iεγ̂5Ψ2

δϕ = 2iεϕ . (4.4)

In the above we have introduced two symplectic doublets. It is possible to make one of them an
auxiliary doublet. Following [4, 15], we consider a free field action of two symplectic Majorana
doublets,

S0 = ∑
[(

ψT
1 CDψ1− 2

a
ΨT

1CΨ1

)
+

(
1→ 2

)]
, (4.5)

where(Ψ1,Ψ2) are auxiliary fields. The action (4.5) is invariant under the symmetric chiral trans-
formations

δψ1 = iεγ5

(
1− a

2
D

)
ψ1 + iεγ5Ψ1, δΨ1 = iεγ5

a
2

Dψ1

δψ2 =−iεγ5

(
1− a

2
D

)
ψ2− iεγ5Ψ2, δΨ2 =−iεγ5

a
2

Dψ2

δϕ = 2iεϕ . (4.6)

Since

δ (ψ1 +Ψ1) = iεγ5(ψ1 +Ψ1), δ (ψ2 +Ψ2) =−iεγ5(ψ2 +Ψ2) , (4.7)
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ψa +Ψa can be used to construct a chirally invariant Yukawa coupling,

SY =
g
2 ∑

[{
(ψ1 +Ψ1)TCϕ(1+ γ5)(ψ1 +Ψ1)

+(ψ2 +Ψ2)TCϕ∗(1− γ5)(ψ2 +Ψ2)
}

+
{

1→ 2
}]

. (4.8)

It is easy to see that the total actionS0 +SY is invariant under (4.6).

5. Discussion and summary

We have discussed the construction of CP-invariant chiral gauge theories, as well as that of
CP-invariant Majorana-Yukawa couplings on the lattice. Both problems are closely related to the
fact that chiral projection operators on the lattice necessarily depend on the Dirac operator. This
already suggests to include the chiral projection operators explicitly in the definition of charge
conjugation and/or parity transformation for the Weyl fermions on the lattice. On the basis of these
modified transformations we have constructed CP-invariant actions. We have also shown that the
C and P transformations tend toward the standard C and P transformations in the continuum limit
and leave the path integral measure invariant.

Let us also discuss some other approaches to the CP problem. In the interesting work [19,
20], chiral projection operators are constructed which are independent of gauge fields. Then CP
invariance of chiral gauge theory is shown by using an 8-component notation. For this work,
one has to examine whether the formulation gives the correct fermionic degrees of freedom in 4-
component notation. In [21], a renormalization group approach is discussed to give a symmetric
form of chiral projection operators. There, locality of those operators has to be examined.

For the construction of the Majorana-Yukawa couplings, we have built a model with an aux-
iliary doublet of symplectic Majorana fermions in addition to the two doublet model discussed in
[13]. An extension of the formalism based on the symplectic Majorana condition to supersymmet-
ric theory on the lattice will be interesting and challenging.
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