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nature of the effective string theory describing the 1akg@CD string.
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1. Introduction

We have recently shown [1] that the closed flux tube spectruid + 2+ 1 SU(N) gauge
theories can be well-approximated by the Nambu-Goto (N&@ ftring in flat space-time. In
particular, such agreement was observed for flux tube lenttt are comparable to the width of
the flux. Thus, the flux-tube approximately behaves like al&umental string even when, naively,
it looks more like a fat blob than a thin string.

It is interesting to know how the closed flux tube spectrur® ix 3+ 1 SU(N) gauge theories
behaves and how this compares to NG and other effectivegdtraories. For an earlier attempt to
calculate this spectrum, but only f8IJ(3) and for a single coarse lattice spacinge$ 0.22fm, see
[2]. For earlier works that focused on the ground state ottheed string see [3] and its citations.
In this paper we present results from three calculationshi@iclosed flux tube spectrum. Two for
N =3 atB = 6.0625 @~ 0.09fm) and at 838 @~ 0.06fm), and one foN =5 atf3 = 17.630
(a~0.09fm). In a further publication we will present high statistmeasurements of the ground
state forSU(3) andSU(6) ata~ 0.09fm. All our N > 3 calculations are focused only on flux-tubes
that carry a single unit of electric flux.

2. Setup of the lattice calculation

We define theSU(N) gauge theory on a four-dimensional Euclidean space-tittiedavhich
is compactified along all directions withy xL,, x L, x Ly sites. The length of the flux tube
is equal toL, while L, ,, L, andLy were chosen to be large enough so to avoid finite volume
effects. To extract the flux tube spectrum we perform MondgkiCsimulations using the standard
Wilson plaquette actiors= S+ 3 [1— %ReTr(UD)] , With 3 = 93—?;) and in order to keep the value
of the lattice spacing approximately fixed for different values dfwe keep the 't Hooft coupling
A(a) = Ng?(a) approximately fixed, so thg®@ 0 N°. The simulation algorithm we use combines
standard heat-bath and over-relaxation steps in the ratiotiese are implemented by updating
SU(2) subgroups using the Cabibbo-Marinari algorithm. To measue spectrum of energies we
use the variational technique (e.g. see Ref. [4] and itseat®s).

The closed flux tube states = 3+ 1 can be classified by the irreducible representations
of the two-dimensional lattice cubic symmetry which we denayC,.! It is a subgroup 00D(2)
that corresponds to rotations by integer multiplesm® around the tube axis. This makes val-
ues of angular momenta that differ by an integer multiple afrfindistinguishable on the lat-
tice, and factorizes the Hilbert space into four sect@gsds = 0, Jmoda = 1, Jnoga= 2. An
additional useful quantum number is the pafty which is associated with reflections around
the axis1;. Such parity flips the sign ad and so we can choose a basis in which states are
characterised by their value df(which can be of either sign), or by their value |df and P, .
In our calculations we use the latter choice. While in thetiomum states of nonzerd are
parity degenerate, on the lattice this is exactly true onlythe oddJ sector. This means we
can denote our states by the 5 irreducible representafigpsE, B, » of C4 whosed and P, as-
signments are{A; : |Imodd =0,PL =4}, {A2: |Imodd = 0,P. = —}, {E : |Imodd = 1,P. = £},
{B1: |Imodd = 2,P. =+}, and{Bz: [Imod4 = 2,P. = —}. All the representations @&, are one-
dimensional except fdg which is two-dimensional.

1Since the global rotational symmetries of a flux-tube wourmbiad a compact direction are those of a two-
dimensional space.
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Two additional useful quantum numbers include the longtadnomentunyp carried by the
flux-tube along its axis (which is quantized in the fopn= 2rm/L ;g € Z) and the parity?| with
respect to reflections across the string midpoint. SRyc@ndp;; do not commute, we can use both
to simultaneously characterise a state only when0. Also, since the energy does not depend on
the sign ofg, we only focused on those with> 0.

The operators we construct have shapes that lead to ceetiesvofJ,P, R, andg. This
is achieved by choosing a linear combination of Polyakoyp$owhose paths consist of various
transverse deformations and various smearing and blodkirals (again see [4]). All the paths
used for the construction of the operators are presentedbite L and all together form a basis of
around 700 operators. Let us show how to construct an opevittoa certain value odmoq4 begin
with the operatorg, that has a deformation extending in anglewithin the plane of transverse
directions. We can construct an operafmid) that belongs to a specific representatiorCgfby
using the formula:p(J) = zn:1_2’3_4e””gcn1g. It is straight-forward to show thap(0) belongs to
eitherA; or A; (depending on its value &t ), thatg(1) belongs tdE, and thatp(2) belongs tdB;
or B. The projection onto certain values Bf andP, is demonstrated pictorially in Eq. (2.1) for
an operator 0fpog4= 0.

TV Vet et o+ =V HP L+ Tl 2 7+ P
il =+ o+ T PR - S W T2
If i = j = k= +1 then the operatop projects onto{A;,P| = +}, if i = +1,j = k= —1 then it

projects onto{Az, P = +}, if i = —1,j = +1,k = —1 it projects onto{A;, P, = —} and finally, if
i = j =—1,k=+1, it projects onto{A;, R = —}.

e=Tr (2.1)
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Table 1: All the transverse deformations used for the constructigdghe@operators.

3. Theoretical expectations for the spectrum from effective string theories

Let us first think about the flux-tube as a string of length aL| winding around the torus.
The classical configuration of the string spontaneoushaksdranslation symmetry and so we
expect a set of Nambu-Goldstone massless bosons to appearatergies. These bosons reflect
the transverse fluctuations of the flux-tube around its aksonfiguration, and i space-time
dimensions there af@ — 2 of them. Below, we describe the current theoretical ptexis for the
excitation spectrum of these bosons.
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3.0.1 The Nambu-Goto model

The Nambu-Goto model describes relativistic strings [F)e Bction of the model is propor-
tional to the area of the world sheet swept by the string asopggates in time. This model is
self-consistent quantum mechanically onlyDn= 26 dimensions (see for example second refer-
ence in [5]), but there are claims in the literature that,aoy value ofD, this model can serve as
an effective low energy field theory for long strings [6]. Rrdnvere on we refer to such low energy
theories as Effective String Theories (ESTs). The spectiiiine Nambu-Goto model fdd =4 is
given below (e.g. see second reference in Ref. [5]).

2
Enc(l) = \/(ol)2+4no(NL++NL+N;+NR - e_ls) + <2|—nq> . (3.1)

Herea is the string tension and™ andN3 are the occupation numbers of the bosons that move to
the left and to the right (the- superscript denotes the spin that they carry). This meate#ch of
these occupation numbers is defined to count the energyaaniied by the bosondN = 5’ ; kg
(hereny is the number of bosons carrying momentkyn The net longitudinal momentum carried
by the bosons is given by= N" + N — Ng — Ng, and the net angular momentum of a state is
given byd = N" + N§ — N —Ng. Itis useful to make a connection to Regge theory by writing
Yi—t Yj=LR N} = J+ mand then interpreting the integeras counting the daughter trajectories of
a certain angular momentudn As usual, leading Regge trajectories of angular momerdtamn
be degenerate in energy with daughter trajectories of l@par states. Below we refer to states
that have the same value & mas ‘being in the same NG level.

Since we think of the NG model as an EST, which may be justifidgl for long strings [6],
we can expand Eq. (3.1) fdkg/o > 1 and we get (for simplicity we set= 0, and follow the
convention in denotind + mby n/2)

4/ D-2\ 8P D-2\2 3218 D—2\3 B

We note in passing that because the NG model is only one pessihdidate of an EST, then in
the language of effective field theories, it may differ frother candidate ESTs by the values of
certain low energy constants (LECs). These LECs would mia&artost general EST spectrum
differ from Eq. (3.2) by the coefficients in the/llexpansion. In the next subsection we discuss a
systematically controlled approach to construct the mesegal EST of the QCD flux-tube.

3.0.2 Effective string theory approaches

A systematic EST study that would describe the QCD flux-tulas pioneered by Liischer,
Symanzik, and Weisz in Ref. [7]. Such an EST approach pradpoedictions for the energy of
states as an expansion il 1 Terms in this expansion that are@f1/IP) are generated byp+ 1)-
derivative terms in the EST action whose coefficients are@iprbitrary LECs. Interestingly,
these LECs were shown to obey strong constraints that reflaoh-linear realization of Lorentz
symmetry [8, 9, 10], and so to give parameter free predistfoncertain terms in the/1 expansion.
We review these predictions below.

First, since we focus on closed stringsgan only be odd (terms in the energy that come with
even powers of Al appear only if there are boundary terms in the action of th& &%l so do
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not exist for closed strings). The analysis wih= 1 was performed in Ref. [7] and was shown
to yield theO(1/1) ‘Luscher term’ in the ground state energy, whose universefficient depends
only onD. Since the 2 derivative action is a free theory, then its spectrum of textstates is
that of (D — 2) massless bosons (the Luscher term is the zero point enetiyesd bosons). The
predictions of Ref. [7] were that t®(1/1) the flux-tube energy is given by the first two terms in
right hand-side of Eq. (3.2).

The 4-derivative terms were analysed in Ref. [8] and = 3 were shown to yield an
O(1/13) term that is identical to the third term in Eq. (3.2). Ref.][5Bowed that this matching
between theD(1/1%) term in the NG prediction and in any general EST holds alsolfet 4.
Ref. [10] also analyzed the-@lerivative terms and showed that for= 3 they yield the fourth
term in the r.h.s. of Eq. (3.2), while for general state®is 4, the coefficient of th€©(1/1°) term
may differ from the one in Eq. (3.2). Nonetheless, the enafgy = 0 state in theD = 4 case
is special and Ref. [10] showed that &%1/1°) term is indeed given by Eq. (3.2), and that the
O(1/1°) term in the average over the energies of states that are sathe NG level is identical to
the O(1/1%) in Eq. (3.2).

A different approach to EST was proposed by Polchinski anon8hger in Ref. [11]. Tech-
nically it uses a different gauge fixing of the embedding domates on the world-sheet (conformal
gauge instead of the static gauge choice used in the ESowioll Ref. [7]). Here the constraints
obeyed by the LECs allows one to maintain the conformal syirynad the world-sheet even out-
side the critical dimension dD = 26. Ref. [11] showed that as a result of these constraings, th
O(1/1) term in the Y1 expansion is the same as in the NG model — it is given by thehardgerm
appearing in Eq. (3.2). Much more recently, Drummond [12)ved that theD(1/13) term is also
identical to the one appearing in th@ Expansion of the NG model (Eq. (3.2)). Finally, the recent
Refs.[13] claim that even higher order terms in thie dxpansion are identical to the corresponding
terms in Eq. (3.2); these claims seem to contradict theteestiRef. [10] forD > 4.

4. Results

4.1 Ground statesin theq=0,1,2 channels

In Figure 1 we present a comparison of the 0,1,2 NG ground states with our dat8U(3)
anda ~ 0.09fm in the left most plotSU(3) anda ~ 0.06fm in the central plot, an8U(5) and
a~ 0.09fm in the right most plot. The NG ground state fpe= 0 is the state of no bosons, and
has trivial quantum numbefs) = 0,P, = +,P; = +}. Indeed our data shows that the ground state
is in the A; representation witlg = 0 andP| = +. We use the measured energy of this state to
extract the string tension by fitting it with the ans&ig(1) = \/(al)z — 2oy aﬁ; we find
C ~ O(1-10) and that foll /o = 3 the correction term is negligible.

The NG ground state in theg= 1 channel had = 1 and isP, degenerate, and so we measure
only the energy of th€, = + channel in theE representation. This measurement is presented in
Fig. 1 where we see that the NG prediction is in agreementauitidata. Finally, NG predicts that
the ground state fay= 2 should be five-fold degenerate, consisting of a state {yith 0, P, = +},
two states witfJ = 1, P, = +}, and two states withJ = 2, P, = +}. We find this to be consistent
with the ground states in th&,, E andBy » representation (again, as fpr= 1, we measure only the
P, = + states in théE representation). Comparing the three plots in Fig. 1 we IsatheO(a?)
andO(1/N?) corrections of our data are small compared to our statigticars. Thus, within our
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level of accuracy, the agreement of our data with the NG misdalgely insensitive to the lattice
spacing and AN? corrections.

SO S b SO
E osGoia-1) NG withn =1 E IUH L NG withn=1 E

4t , 4t |

NG withn =0 NG withn =0
2F 2
9.5{J=0pP, R/ =+.0=0} 9s{J=0P, R =+.q=0}
0 . . . . 0 . . . . 0 . . . .
2 25 3 35 4 2 25 3 3.5 4 2 25 3 35 4
|\/0'f |1/O'f |1/O'f

Figure 1. Energies of the lightest states that correspongi+00, 1,2 NG ground states.

4.2 Further g= 0 states

We now turn to examine the first excited state in the 0 sector and present the results in
Figure 2. In the NG model, this energy level is four-fold degiete with a single state from each
of the following representationdJ =0,P, =B =+},{J=0,P.=PF =-},{J=2P =P/ =
+}, and{J =2,P, = — B = +}. On the lattice, this would imply that states fraff;,P| =
+),(A2,R; = —),(B1,R| = +), and(Bp, B, = +) are all degenerate (up ©(a?) corrections).

Instead, what we find is that while the states belongingAg P, = +), (B, P = +), and
(B2,P| = +) are all quite close to each other and to the NG model, the Biaté,, P = —)
is anomalously different and shows substantial deviattomfNG. It is tempting to expect that
this state’s energy would eventually approach the NG ptieticand is perhaps reflecting a large
coefficient multiplying the term that controls this devietifrom NG in the EST). Nonetheless,
an equally likely possibility is that it does not convergeNG. In fact, observe that the energy of
this state is higher than the ground state energy by appaiglynan equal amount throughout the
distance range that our simulations are able to explorereftne, at large enougdh it might cross
the NG prediction, as a massive state would. We do not knowwbossibility provides a better
explanation for the strikingly ‘anomalous’ way that the egyeof this state behaves. This behaviour
does not change as we decrease the lattice spacing (cdotjaincreaseN (right-most plot).

In Figure 2 we also provide a comparison of the four stateb exipansions of the Nambu-
Goto square root order by order in terms gf Lip toO(1/1°) — see Eq. (3.2) (note that according
to Ref. [10] it is only up toO(1/I%) that we can trust Eq. (3.2)). Excluding the anomalously
behaving ground state in thgA;,R = —} channel, the other three states are obviously better
described by NG than by any other EST. This reflects a simgle feearly all our data is beyond
the radius of convergence of th¢l lexpansion (which can be estimated from the EST series to be
(1V/0)converge™ 3-5 for this particular state). Thus, the fact that our dataiglsse to NG even
beyond the radius of convergence suggests that the ESTambpoan be somehow resummed to
yield the NG square root of EqQ. (3.1) plus some small comesti In our 2+ 1 study [1] we also
saw an agreement with NG beyond the radius of convergende &$T.
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Figure 2: Energies of the four states with= 0 expected to be characterisedrby 1.

4.3 Further g= 1 states

We now discuss further results for states wite- 1 — see Figure 3. Here the first excited
NG energy levelif = 3/2) should be ten-fold degenerate. These states are thedystates of
{J=0P, =+},{3=0P, =-},{J=3P =+},{J=2P,. =4}, {J=2P, = -} and the
first excited states ofJ = 1,P, = +}. On the lattice these states fall into two degenerate pairs
of states inE, and four more states that belongAe, andBy». The parity degeneracy in the
representation allows us to calculate only Ehe= + states and we therefore expect six degenerate
states in the NG model.

Unfortunately, our basis of operators was insufficient wcessfully isolate all these six states,
and we were able to extract only four of them. We found thaetergy of theg = 1 lowest energy
states in theA; and B; representation, and second lowest energy states i ttepresentation,
agree fairly well with the energy of the= 3/2 NG level. In contrast, the ground statecpt 1
in the A, representation (which is naively associated with dhe 0, P, = — channel) appears
anomalous: it has a large deviation from the NG curve and doeshow any sign of convergence.
This is true also on our finer lattice (central plot) and $¥(5) (right-most plot).

SU(3), B = 6.0625 _| U(3), B =6.3380 | (5), B = 17.630
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I\/O'7f |\/O'7f I\/O'7f

Figure 3: Energies of the lightest five distinguishable states @ith 1.
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5. Summary
We calculated energies of 13 states in the spectrum of clsseds in 3+ 1 dimensional

SU(N) gauge theories. We study the gauge groBp$3) (with lattice spacinga ~ 0.09,0.06fm)
andSU(5) (with a~ 0.09fm) and the string lengths in the rang®fin <1| < 1.8fm.

Most of the energies we measured show a convincing agreenimnthe Nambu-Goto (NG)
model. We compare our results with recent predictions frimeroeffective string theories (ESTS),
but because most of the flux-tubes that we probe have lertgghare beyond the radius of conver-
gence of the ESTs (for the excited states), this compar&s) The only model that describes our
data well, even for short flux-tubes and excited states.eid\it model. This was seen also in our
previous work on 2- 1 dimensions (see Ref. [1]), and seems to suggest that the¥sihsion can
be resummed. Despite the overall good agreement with NGoviiadl large deviations for certain
states that have negative parity and that belong té&\thepresentation of the lattice group (which
naively corresponds to zero angular momentum). We see tiegations also for states that carry
both zero and one unit of longitudinal momentum.

There are many avenues one could take on the lattice to makeess towards establishing
what is the effective string theory of the QCD flux-tube. Tdnfgure studies may include the search
for massive excitations like breathing modes, attemptingdcurately test the current theoretical
predictions (see Section 3) within their radius of convaoge studying the open string spectrum,
etc. We also look forward to theoretical progress that walitmlv one to understand the results we
presented in this proceedings. For example, how can thedhex-behave like a NG string below
the radius of convergence of the effective string theoryaesppn? and what makes the states in
the A; representation have large deviations from the NG model?
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