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We study the spectrum of closed flux tubes in four dimensionalSU(N) gauge theories. We do

so by calculating the energies of the low lying states with the variational technique (whose basis

consists of about∼ 700 operators). We study states of different values of angular momentum,

transversal parity, longitudinal parity, and longitudinal momentum, and compare the results with

effective string theories (ESTs) such as the Nambu-Goto (NG) model. Most of our states agree

very well with the Nambu-Goto predictions and since most of our flux-tubes’ lengths are outside

the radius of convergence of the ESTs, then for some states itis only the NG that predicts the

spectrum well. This strongly suggests that the ESTs can be re-summed. Nonetheless, there are

a few states (all with negative parity and in the same representation of the lattice rotation group)

that exhibit large deviations from the NG predictions; these deviations might provide clues to the

nature of the effective string theory describing the large-N QCD string.
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1. Introduction

We have recently shown [1] that the closed flux tube spectrum in D = 2+ 1 SU(N) gauge
theories can be well-approximated by the Nambu-Goto (NG) free string in flat space-time. In
particular, such agreement was observed for flux tube lengths that are comparable to the width of
the flux. Thus, the flux-tube approximately behaves like a fundamental string even when, naively,
it looks more like a fat blob than a thin string.

It is interesting to know how the closed flux tube spectrum inD = 3+1 SU(N) gauge theories
behaves and how this compares to NG and other effective string theories. For an earlier attempt to
calculate this spectrum, but only forSU(3) and for a single coarse lattice spacing ofa≈ 0.22fm, see
[2]. For earlier works that focused on the ground state of theclosed string see [3] and its citations.
In this paper we present results from three calculations forthe closed flux tube spectrum. Two for
N = 3 at β = 6.0625 (a≃ 0.09fm) and at 6.338 (a≃ 0.06fm), and one forN = 5 at β = 17.630
(a≃ 0.09fm). In a further publication we will present high statistics measurements of the ground
state forSU(3) andSU(6) ata≈ 0.09fm. All our N > 3 calculations are focused only on flux-tubes
that carry a single unit of electric flux.

2. Setup of the lattice calculation

We define theSU(N) gauge theory on a four-dimensional Euclidean space-time lattice which
is compactified along all directions withL‖ × L⊥1 × L⊥2 × LT sites. The length of the flux tube
is equal toL‖, while L⊥1, L⊥2 andLT were chosen to be large enough so to avoid finite volume
effects. To extract the flux tube spectrum we perform Monte-Carlo simulations using the standard
Wilson plaquette action,S= ∑� β

[

1− 1
N ReTr(U�)

]

, with β = 2N
g2(a)

, and in order to keep the value
of the lattice spacinga approximately fixed for different values ofN we keep the ’t Hooft coupling
λ (a) = Ng2(a) approximately fixed, so thatβ ∝ N2. The simulation algorithm we use combines
standard heat-bath and over-relaxation steps in the ratio 1:4; these are implemented by updating
SU(2) subgroups using the Cabibbo-Marinari algorithm. To measure the spectrum of energies we
use the variational technique (e.g. see Ref. [4] and its references).

The closed flux tube states inD = 3+ 1 can be classified by the irreducible representations
of the two-dimensional lattice cubic symmetry which we denote byC4.1 It is a subgroup ofO(2)

that corresponds to rotations by integer multiples ofπ/2 around the tube axis. This makes val-
ues of angular momenta that differ by an integer multiple of four indistinguishable on the lat-
tice, and factorizes the Hilbert space into four sectors:Jmod4 = 0, Jmod4 = ±1, Jmod4 = 2. An
additional useful quantum number is the parityP⊥ which is associated with reflections around
the axis⊥̂1. Such parity flips the sign ofJ and so we can choose a basis in which states are
characterised by their value ofJ (which can be of either sign), or by their value of|J| and P⊥.
In our calculations we use the latter choice. While in the continuum states of nonzeroJ are
parity degenerate, on the lattice this is exactly true only for the oddJ sector. This means we
can denote our states by the 5 irreducible representationsA1,2,E,B1,2 of C4 whoseJ andP⊥ as-
signments are:{A1 : |Jmod4| = 0,P⊥ = +} ,{A2 : |Jmod4| = 0,P⊥ = −}, {E : |Jmod4| = 1,P⊥ = ±} ,

{B1 : |Jmod4| = 2,P⊥ = +}, and{B2 : |Jmod4| = 2,P⊥ = −}. All the representations ofC4 are one-
dimensional except forE which is two-dimensional.

1Since the global rotational symmetries of a flux-tube wound around a compact direction are those of a two-
dimensional space.
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Two additional useful quantum numbers include the longitudinal momentump|| carried by the
flux-tube along its axis (which is quantized in the formp|| = 2πq/L||;q∈ Z) and the parityP|| with
respect to reflections across the string midpoint. SinceP|| andp|| do not commute, we can use both
to simultaneously characterise a state only whenq = 0. Also, since the energy does not depend on
the sign ofq, we only focused on those withq≥ 0.

The operators we construct have shapes that lead to certain values ofJ,P⊥,P||, andq. This
is achieved by choosing a linear combination of Polyakov loops whose paths consist of various
transverse deformations and various smearing and blockinglevels (again see [4]). All the paths
used for the construction of the operators are presented in Table 1 and all together form a basis of
around 700 operators. Let us show how to construct an operator with a certain value ofJmod4: begin
with the operatorφα that has a deformation extending in angleα within the plane of transverse
directions. We can construct an operatorφ(J) that belongs to a specific representation ofC4 by
using the formula:φ(J) = ∑n=1,2,3,4 eiJnπ

2 φnπ
2
. It is straight-forward to show thatφ(0) belongs to

eitherA1 or A2 (depending on its value ofP⊥), thatφ(1) belongs toE, and thatφ(2) belongs toB1

or B2. The projection onto certain values ofP⊥ andP|| is demonstrated pictorially in Eq. (2.1) for
an operator ofJmod4= 0.

φ = Tr

[

j

i

k

]

(2.1)

If i = j = k = +1 then the operatorφ projects onto{A1,P|| = +}, if i = +1, j = k = −1 then it
projects onto{A2,P|| = +}, if i = −1, j = +1,k = −1 it projects onto{A1,P|| = −} and finally, if
i = j = −1,k = +1, it projects onto{A2,P|| = −}.

1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26

Table 1: All the transverse deformations used for the construction of the operators.

3. Theoretical expectations for the spectrum from effective string theories

Let us first think about the flux-tube as a string of lengthl = aL‖ winding around the torus.
The classical configuration of the string spontaneously breaks translation symmetry and so we
expect a set of Nambu-Goldstone massless bosons to appear atlow energies. These bosons reflect
the transverse fluctuations of the flux-tube around its classical configuration, and inD space-time
dimensions there areD−2 of them. Below, we describe the current theoretical predictions for the
excitation spectrum of these bosons.
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3.0.1 The Nambu-Goto model

The Nambu-Goto model describes relativistic strings [5]. The action of the model is propor-
tional to the area of the world sheet swept by the string as it propagates in time. This model is
self-consistent quantum mechanically only inD = 26 dimensions (see for example second refer-
ence in [5]), but there are claims in the literature that, forany value ofD, this model can serve as
an effective low energy field theory for long strings [6]. From here on we refer to such low energy
theories as Effective String Theories (ESTs). The spectrumof the Nambu-Goto model forD = 4 is
given below (e.g. see second reference in Ref. [5]).

ENG(l) =

√

(σ l)2 +4πσ
(

N+
L +N−

L +N+
R +N−

R − 1
6

)

+

(

2πq
l

)2

. (3.1)

Hereσ is the string tension andN±
L andN±

R are the occupation numbers of the bosons that move to
the left and to the right (the± superscript denotes the spin that they carry). This means that each of
these occupation numbers is defined to count the energy unitscarried by the bosons:N = ∑∞

k=1 knk

(herenk is the number of bosons carrying momentumk). The net longitudinal momentum carried
by the bosons is given byq = N+

L + N−
L −N+

R −N−
R , and the net angular momentum of a state is

given byJ = N+
L + N+

R −N−
L −N−

R . It is useful to make a connection to Regge theory by writing

∑i=± ∑ j=L,RNi
j ≡ J+mand then interpreting the integermas counting the daughter trajectories of

a certain angular momentumJ. As usual, leading Regge trajectories of angular momentumJ can
be degenerate in energy with daughter trajectories of lowerspin states. Below we refer to states
that have the same value ofJ+mas ‘being in the same NG level’.

Since we think of the NG model as an EST, which may be justified only for long strings [6],
we can expand Eq. (3.1) forl

√
σ ≫ 1 and we get (for simplicity we setq = 0, and follow the

convention in denotingJ+mby n/2)

ENG(l) = σ l +
4π
l

(

n− D−2
24

)

− 8π2

σ l3

(

n− D−2
24

)2

+
32π3

σ2l5

(

n− D−2
24

)3

+O(l−7). (3.2)

We note in passing that because the NG model is only one possible candidate of an EST, then in
the language of effective field theories, it may differ from other candidate ESTs by the values of
certain low energy constants (LECs). These LECs would make the most general EST spectrum
differ from Eq. (3.2) by the coefficients in the 1/l expansion. In the next subsection we discuss a
systematically controlled approach to construct the most general EST of the QCD flux-tube.

3.0.2 Effective string theory approaches

A systematic EST study that would describe the QCD flux-tube was pioneered by Lüscher,
Symanzik, and Weisz in Ref. [7]. Such an EST approach produces predictions for the energy of
states as an expansion in 1/l . Terms in this expansion that are ofO(1/l p) are generated by(p+1)-
derivative terms in the EST action whose coefficients are a priori arbitrary LECs. Interestingly,
these LECs were shown to obey strong constraints that reflecta non-linear realization of Lorentz
symmetry [8, 9, 10], and so to give parameter free predictions for certain terms in the 1/l expansion.
We review these predictions below.

First, since we focus on closed strings,p can only be odd (terms in the energy that come with
even powers of 1/l appear only if there are boundary terms in the action of the EST and so do
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not exist for closed strings). The analysis withp = 1 was performed in Ref. [7] and was shown
to yield theO(1/l) ‘Lüscher term’ in the ground state energy, whose universal coefficient depends
only on D. Since the 2−derivative action is a free theory, then its spectrum of excited states is
that of (D−2) massless bosons (the Lüscher term is the zero point energy ofthese bosons). The
predictions of Ref. [7] were that toO(1/l) the flux-tube energy is given by the first two terms in
right hand-side of Eq. (3.2).

The 4−derivative terms were analysed in Ref. [8] and forD = 3 were shown to yield an
O(1/l3) term that is identical to the third term in Eq. (3.2). Ref. [10] showed that this matching
between theO(1/l3) term in the NG prediction and in any general EST holds also forD = 4.
Ref. [10] also analyzed the 6−derivative terms and showed that forD = 3 they yield the fourth
term in the r.h.s. of Eq. (3.2), while for general states inD = 4, the coefficient of theO(1/l5) term
may differ from the one in Eq. (3.2). Nonetheless, the energyof n = 0 state in theD = 4 case
is special and Ref. [10] showed that itsO(1/l5) term is indeed given by Eq. (3.2), and that the
O(1/l5) term in the average over the energies of states that are in thesame NG level is identical to
theO(1/l5) in Eq. (3.2).

A different approach to EST was proposed by Polchinski and Strominger in Ref. [11]. Tech-
nically it uses a different gauge fixing of the embedding coordinates on the world-sheet (conformal
gauge instead of the static gauge choice used in the ESTs following Ref. [7]). Here the constraints
obeyed by the LECs allows one to maintain the conformal symmetry of the world-sheet even out-
side the critical dimension ofD = 26. Ref. [11] showed that as a result of these constraints, the
O(1/l) term in the 1/l expansion is the same as in the NG model — it is given by the Luscher term
appearing in Eq. (3.2). Much more recently, Drummond [12] showed that theO(1/l3) term is also
identical to the one appearing in the 1/l expansion of the NG model (Eq. (3.2)). Finally, the recent
Refs.[13] claim that even higher order terms in the 1/l expansion are identical to the corresponding
terms in Eq. (3.2); these claims seem to contradict the results of Ref. [10] forD ≥ 4.

4. Results

4.1 Ground states in the q = 0,1,2 channels
In Figure 1 we present a comparison of theq = 0,1,2 NG ground states with our data:SU(3)

anda ≃ 0.09fm in the left most plot,SU(3) anda ≃ 0.06fm in the central plot, andSU(5) and
a≃ 0.09fm in the right most plot. The NG ground state forq = 0 is the state of no bosons, and
has trivial quantum numbers{J = 0,P⊥ = +,P|| = +}. Indeed our data shows that the ground state
is in theA1 representation withq = 0 andP|| = +. We use the measured energy of this state to

extract the string tension by fitting it with the ansatzEgs(l) =
√

(σ l)2− 2πσ
3 + σ C

(
√

σ l)6 ; we find

C∼ O(1−10) and that forl
√

σ & 3 the correction term is negligible.
The NG ground state in theq = 1 channel hasJ = 1 and isP⊥ degenerate, and so we measure

only the energy of theP⊥ = + channel in theE representation. This measurement is presented in
Fig. 1 where we see that the NG prediction is in agreement withour data. Finally, NG predicts that
the ground state forq= 2 should be five-fold degenerate, consisting of a state with{J = 0,P⊥ = +},
two states with{J = 1,P⊥ =±}, and two states with{J = 2,P⊥ =±}. We find this to be consistent
with the ground states in theA1,E andB1,2 representation (again, as forq= 1, we measure only the
P⊥ = + states in theE representation). Comparing the three plots in Fig. 1 we see that theO(a2)

andO(1/N2) corrections of our data are small compared to our statistical errors. Thus, within our
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level of accuracy, the agreement of our data with the NG modelis largely insensitive to the lattice
spacing and 1/N2 corrections.
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SU(3), β = 6.0625 SU(3), β = 6.3380 SU(5), β = 17.630

Figure 1: Energies of the lightest states that correspond toq = 0,1,2 NG ground states.

4.2 Further q = 0 states

We now turn to examine the first excited state in theq = 0 sector and present the results in
Figure 2. In the NG model, this energy level is four-fold degenerate with a single state from each
of the following representations:{J = 0,P⊥ = P|| = +}, {J = 0,P⊥ = P|| = −}, {J = 2,P⊥ = P|| =
+}, and{J = 2,P⊥ = −,P|| = +}. On the lattice, this would imply that states from(A1,P|| =

+),(A2,P|| = −),(B1,P|| = +), and(B2,P|| = +) are all degenerate (up toO(a2) corrections).

Instead, what we find is that while the states belonging to(A1,P|| = +),(B1,P|| = +), and
(B2,P|| = +) are all quite close to each other and to the NG model, the statein (A2,P|| = −)

is anomalously different and shows substantial deviation from NG. It is tempting to expect that
this state’s energy would eventually approach the NG prediction (and is perhaps reflecting a large
coefficient multiplying the term that controls this deviation from NG in the EST). Nonetheless,
an equally likely possibility is that it does not converge toNG. In fact, observe that the energy of
this state is higher than the ground state energy by approximately an equal amount throughout the
distance range that our simulations are able to explore. Therefore, at large enoughl , it might cross
the NG prediction, as a massive state would. We do not know which possibility provides a better
explanation for the strikingly ‘anomalous’ way that the energy of this state behaves. This behaviour
does not change as we decrease the lattice spacing (central plot) or increaseN (right-most plot).

In Figure 2 we also provide a comparison of the four states with expansions of the Nambu-
Goto square root order by order in terms of 1/l up toO(1/l5) – see Eq. (3.2) (note that according
to Ref. [10] it is only up toO(1/l3) that we can trust Eq. (3.2)). Excluding the anomalously
behaving ground state in the{A2,P|| = −} channel, the other three states are obviously better
described by NG than by any other EST. This reflects a simple fact: nearly all our data is beyond
the radius of convergence of the 1/l expansion (which can be estimated from the EST series to be
(l
√

σ)converge≃ 3.5 for this particular state). Thus, the fact that our data is so close to NG even
beyond the radius of convergence suggests that the EST approach can be somehow resummed to
yield the NG square root of Eq. (3.1) plus some small corrections. In our 2+ 1 study [1] we also
saw an agreement with NG beyond the radius of convergence of the EST.
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Figure 2: Energies of the four states withq = 0 expected to be characterised byn = 1.

4.3 Further q = 1 states

We now discuss further results for states withq = 1 — see Figure 3. Here the first excited
NG energy level (n = 3/2) should be ten-fold degenerate. These states are the ground states of
{J = 0,P⊥ = +}, {J = 0,P⊥ = −}, {J = 3,P⊥ = ±}, {J = 2,P⊥ = +}, {J = 2,P⊥ = −} and the
first excited states of{J = 1,P⊥ = ±}. On the lattice these states fall into two degenerate pairs
of states inE, and four more states that belong toA1,2 andB1,2. The parity degeneracy in theE
representation allows us to calculate only theP⊥ = + states and we therefore expect six degenerate
states in the NG model.

Unfortunately, our basis of operators was insufficient to successfully isolate all these six states,
and we were able to extract only four of them. We found that theenergy of theq= 1 lowest energy
states in theA1 andB1 representation, and second lowest energy states in theE representation,
agree fairly well with the energy of then = 3/2 NG level. In contrast, the ground state ofq = 1
in the A2 representation (which is naively associated with theJ = 0, P⊥ = − channel) appears
anomalous: it has a large deviation from the NG curve and doesnot show any sign of convergence.
This is true also on our finer lattice (central plot) and forSU(5) (right-most plot).
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Figure 3: Energies of the lightest five distinguishable states withq = 1.
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5. Summary
We calculated energies of 13 states in the spectrum of closedstrings in 3+ 1 dimensional

SU(N) gauge theories. We study the gauge groupsSU(3) (with lattice spacinga≈ 0.09,0.06fm)
andSU(5) (with a≈ 0.09fm) and the string lengths in the range 0.9fm . l . 1.8fm.

Most of the energies we measured show a convincing agreementwith the Nambu-Goto (NG)
model. We compare our results with recent predictions from other effective string theories (ESTs),
but because most of the flux-tubes that we probe have lengths that are beyond the radius of conver-
gence of the ESTs (for the excited states), this comparison fails. The only model that describes our
data well, even for short flux-tubes and excited states, is the NG model. This was seen also in our
previous work on 2+1 dimensions (see Ref. [1]), and seems to suggest that the ESTexpansion can
be resummed. Despite the overall good agreement with NG, we do find large deviations for certain
states that have negative parity and that belong to theA1 representation of the lattice group (which
naively corresponds to zero angular momentum). We see thesedeviations also for states that carry
both zero and one unit of longitudinal momentum.

There are many avenues one could take on the lattice to make progress towards establishing
what is the effective string theory of the QCD flux-tube. These future studies may include the search
for massive excitations like breathing modes, attempting to accurately test the current theoretical
predictions (see Section 3) within their radius of convergence, studying the open string spectrum,
etc. We also look forward to theoretical progress that wouldallow one to understand the results we
presented in this proceedings. For example, how can the flux-tube behave like a NG string below
the radius of convergence of the effective string theory expansion? and what makes the states in
theA1 representation have large deviations from the NG model?
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