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We investigate the stability of strings connecting chargesQ in the representation{2Q+ 1} of

SU(2) Yang-Mills theory in(2+1) dimensions. While the fundamental{2}-string between two

chargesQ = 1
2 is unbreakable and stable, the string connecting static charges transforming un-

der any other representationQ ≥ 1 is unstable and decays. A chargeQ = 1 can be completely

screened by gluons and so the adjoint{3}-string ultimately breaks. A chargeQ = 3
2 can be only

partially screened to a fundamental chargeQ = 1
2. Thus, stretching a{4}-string beyond a critical

length, it decays into the stable{2}-string by gluon pair creation. The complete breaking of a

{5}-string happens in two steps, it first decays into a{3}-string and then breaks completely. A

phenomenological constituent gluon model provides a good quantitative description of the energy

of the screened charges at the ends of an unstable string.
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1. Introduction

At low temperatures quarks are confined inside hadrons. As one pulls apart a quark-anti-quark
pair, its energy increases linearly with the distance. At some point the energy stored in the flux
tube is sufficient to pop a quark-anti-quark pair out of the vacuum. In thisway the string breaks
or, alternatively, the string state decays into a meson pair [1, 2, 3, 4, 5]. As one increases the
quark mass, the energy that needs to be stored in the flux tube in order to create a quark-anti-quark
pair from the vacuum will be larger. This means that the sources have to bepulled apart to larger
distances. As one sends the quark mass to infinity, the string decay scale goes to infinity as well,
and one recovers the Yang-Mills theory where quark degrees of freedom have been removed from
the dynamics. On the other hand, the string connecting two adjoint sources isstill unstable due to
pair-creation of dynamical gluons. This effect has been investigated in [6, 7, 8, 9, 10, 11, 12].

Observing the decay of unstable strings and investigating the characteristics of this process
provide valuable insights into the physics of confinement. The property ofN-ality is important
to understand the decay of unstable strings inSU(N) Yang-Mills theory. In this theory, the only
dynamical degrees of freedom are gluons that transform under the adjoint representation of the
gauge group. Since the center subgroup ofSU(N) is Z(N), the representations split intoN different
N-ality sectors. Starting from a given representation one can reach all other representations in
the sameN-ality sector by coupling the initial representation with an arbitrary number of adjoint
representations. On the other hand, by coupling a given representationto an arbitrary number of
adjoint representations, one can never reach anotherN-ality sector. As a physical consequence,
N-ality implies that, by gluon emission, a given source representation can only be screened to
representations in the sameN-ality sector. If two representations belong to different sectors, this
cannot happen. In everyN-ality sector there is one stable string, i.e. the one with the minimal string
tension. All other strings in that sector decay into the stable one for a sufficiently large distance
between the sources.

For simplicity, we study the dynamics of strings in(2+1)-d SU(2) Yang-Mills theory which
has the centerZ(2). We expect that other theories in(3+1) dimensions or with other gauge groups
show similar behavior. We consider strings connecting two static chargesQ in the representation
{2Q+ 1} of SU(2). We denote them as{2Q+ 1}-strings which should not be confused withk-
strings. WhenQ is an integer, the{2Q+1}-strings are unstable and they eventually break at large
distances. On the other hand, whenQ is a half-integer, the{2Q+ 1}-strings are still unstable but
ultimately unbreakable. At sufficiently large distances, all these strings have the same tensionσ1/2

given by the fundamental{2}-string. Dynamical gluons screen the static chargesQ at the two
endpoints of the{2Q+1}-string: when a gluon pair pops out of the vacuum, the external sources
Q are screened and they behave as sourcesQ−1. Hence, the{2Q+1}-string decays to a{2Q−1}-
string and its tension is abruptly reduced [13, 14]. Here, using the multi-level simulation technique
of [15], we present results of a detailed study of string decay [16]. Some indications for string
decay were presented in [17].

2. The numerical study

We perform numerical simulations ofSU(2) Yang-Mills theory on a cubic lattice in(2+ 1)
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dimensions. We consider the standard Wilson action given by the path-ordered product of the link
variables in the fundamental representation along an elementary plaquette. The observable we
measure is the two-point function of Polyakov loopsΦQ(x) in the{2Q+1} representation. In this
way, we insert external color chargesQ into the system and the corresponding potentialVQ(r) is
extracted from

〈ΦQ(0)ΦQ(r)〉 ∼ exp(−βVQ(r)). (2.1)

The numerical simulations have been performed at an inverse temperature as large asβ = 64 in
lattice units in order to enhance the projection on the ground state of the string.The lattice size
in the spatial direction wasL = 32. We run at bare gauge coupling 4/g2 = 6.0: this puts the
deconfinement phase transition atβc ≈ 4. Although we consider a moderate coupling, we expect
that discretization effects are marginal and that our results stay unchanged, at least qualitatively,
in the continuum limit. The measurements of the Polyakov loop correlators span awide range of
values, from 10−8 to 10−135: this was possible thanks to the very powerful multi-level simulation
technique developed by Lüscher and Weisz [15]. We have slightly improved this method by slicing
the lattice not only into slabs in time, but also into blocks in space. After an elaborate tuning of the
parameters of the multi-level algorithm, we have measured the potentialsVQ(r) for the{2}-, {3}-,
{4}-, and{5}-strings. In figure 1-left, we observe the decay of the{4}-string to the{2}-string
at r ≈ 8 with a sudden reduction of the tension down to the value of the fundamental string. In
figure 1-right, the{5}-string has a first decay at distancer ≈ 6, reducing its tension to the one of
the adjoint{3}-string. Then, atr ≈ 10, the string breaks completely, at about the same distance as
the adjoint{3}-string. Consistent with expectations, the tension of a string connecting two charges
Q is the same, no matter whether those charges are screened or not.
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Figure 1: Left: Potential VQ(r) of two static color charges with half-integer charges Q= 1
2 and Q= 3

2. For
a more convenient comparison of the slopes, the Q= 1

2 data have been shifted by a constant. Right: The
same for Q= 1 and Q= 2. The lines are the fits of the Monte Carlo data obtained using the multi-channel
model. The horizontal band at2M0,2 = 4.84(2) corresponds to twice the mass of a source of charge Q= 2.
This value has been obtained from the measurement of a singlePolyakov loop.

In order to fit the static potential connecting two fundamental charges, we use [18, 19, 20]

V1/2(r) = σ1/2r − π
24r

+2M +O(1/r3), (2.2)
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The quality of the fit is very good and we measure the string tensionσ1/2 = 0.06397(3). Further-
more, the Monte Carlo data show an excellent agreement with the coefficient− π

24 of the Lüscher
term. The constant term, describing the “mass” contribution of an external chargeQ = 1

2 to the
total energy, is given byM = 0.109(1). However, due to ultra-violet divergences, this “mass” itself
is not physical.

The energy scale,ΛQCD, of the Yang-Mills theory is not well separated from the typical
distances of the string decays. Thus, unlike the string behavior at asymptotic distances, one cannot
describe the string decay in a fully systematic low-energy effective string theory. Moreover, unlike
the tensionσ1/2 of the stable fundamental string, the tensionσQ of an unstable{2Q+ 1}-string
(with Q≥ 1) cannot be defined unambiguously. We defineσQ as a fit parameter of the Monte Carlo
data to a simple phenomenological model. In this model, the{2Q+ 1}-string is described as a
multi-channel system.

In the phenomenological multi-channel model, the energy of a{2Q+1}-string connecting two
chargesQ, which results from the screening of a larger chargeQ+n by n gluons, is given by

EQ,n(r) = σQr − cQ

r
+2MQ,n. (2.3)

In general,cQ is the coefficient of a sub-leading 1/r correction: this term does not necessarily
assume the asymptotic Lüscher value− π

24. We denote the “mass” that describes the contribution
of an original chargeQ+ n that n gluons have screened down to the valueQ by MQ,n. Like the
“mass” M = M1/2,0, the “masses”MQ,n themselves are not physical due to ultra-violet divergent
contributions. On the other hand, the mass differences∆Q,n = MQ−1,n+1−MQ,n have a physical
meaning since the divergent pieces cancel. The two-channel Hamiltonians, H1 andH3/2, describe
the{3}- and{4}-strings; the{5}-string is described by the three-channel HamiltonianH2

H1(r) =

(

E1,0(r) A
A E0,1(r)

)

,

H3/2(r) =

(

E3/2,0(r) B
B E1/2,1(r)

)

,

H2(r) =







E2,0(r) C 0
C E1,1(r) A
0 A E0,2(r)






. (2.4)

The parametersA, B, andC are decay amplitudes — which we assume to ber-independent —
and the potentialVQ(r) is the energy of the ground state ofHQ. Using the multi-channel model, in
Figure 2 we compare the forcesF(r) = −dV(r)/dr for the{2}-, {3}-, {4}-, and{5}-string cases
with the results of the numerical simulations.

In table 1-left, we list the tensionsσQ determined by a fit of the Monte Carlo data: the simple
multi-channel model works rather well. Interestingly, the ratiosσQ/σ1/2 do not obey the con-
jectured Casimir scaling [21, 22], i.e. they are not equal to 4Q(Q+ 1)/3. In table 1-right we
list the “masses”MQ,n. It is important to note that, within the error bars, the mass differences
∆Q,0 = MQ−1,1−MQ,0 all take the same valueMG = 0.65(5), independent ofQ. According to this
result,MG can be interpreted as a constituent gluon mass: in units of the fundamental string tension,
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it takes the valueMG/
√σ1/2 = 2.6(2). In contrast to the string tension,MG is not unambiguously

defined. Again, it is obtained from the fit parameters using the phenomenological multi-channel
model. The mass difference∆1,1 = M0,2−M1,1 = 0.71(3) shows that the dynamical creation of
a second constituent gluon has an energy cost slightly larger thanMG. Finally, it is interesting to
note that the mass of two constituent gluons 2MG = 1.3(1) is compatible with the 0+ glueball mass
M0+ = 1.198(25) measured at the same value of the bare coupling [23]. The constituent gluon mass
MG is also related to the distance scale for string decay and string breaking. Infact, the distance at
which the{4}-string decays into the{2}-string isr ≈ 2MG/(σ3/2−σ1/2) = 7.3(6). Similarly, the
string breaking distance of the{3}- and of the{5}-string is given byr ≈ 2MG/σ1 = 9.0(7).
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Figure 2: Left: Forces F(r) between the external charges Q= 1
2 and Q= 3

2. Right: The same for external
charges Q= 1 and Q= 2. The lines are the fits of the Monte Carlo data using the multi-channel model.

Q σQ σQ/σ1/2 4Q(Q+1)/3

1/2 0.06397(3) 1 1
1 0.144(1) 2.25(2) 8/3

3/2 0.241(5) 3.77(8) 5
2 0.385(5) 6.02(8) 8

Q MQ,0 MQ−1,1 MQ−2,2 ∆Q,0 ∆Q−1,1

1/2 0.109(1) — — — —
1 0.37(3) 1.038(1) — 0.67(3) —

3/2 0.72(5) 1.32(5) — 0.60(5) —
2 1.04(3) 1.71(3) 2.42(1) 0.67(3) 0.71(3)

Table 1: Left: Values of the string tensionsσQ obtained using the multi-channel model. The expected values
of the ratioσQ/σ1/2 assuming Casimir scaling (4Q(Q+1)/3) is compared with the measurements obtained
from numerical simulations. Right: Values of the “mass” MQ,n of an external charge Q+ n screened by n
gluons to the value Q. The differences∆Q,n = MQ−1,n+1−MQ,n are also shown in the last two columns.

3. Discussion and outlook

The process of strand rupture in a cable consisting of a bundle of strands is a classical analog
of the quantum string decay. Suppose that one stretches a cable furtherand further: at some point
individual strands eventually rupture, thereby abruptly reducing the tension of the cable. However
it is not clear whether the strand picture provides only an intuitive analog ordescribes the actual
anatomy of decaying{2Q+ 1}-strings. This is a an interesting question that requires a detailed
investigation of the internal structure of{2Q+1}-strings.
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In this paper, we have discussed the results of numerical simulations inSU(2) Yang-Mills
theory. It would be interesting to extend this study to otherSU(N) gauge theories as well. For
instance,SU(4) Yang-Mills theory has two distinct unbreakable strings due to itsZ(4) center sym-
metry: the first stablek-string connects external charges in the{4} and{4} representations, and
the second stablek-string connects two sources in the{6}-representation. For sources transform-
ing under larger representations with non-trivialN-ality, one then expects cascades of string decays
down to the{4}-string or down to the{6}-string. All other representations belong to the trivial
N-ality sector and strings in that sector ultimately break completely.

The investigation of gauge groups other thanSU(N) is also interesting in many respects. In
particular, one expects new effects that are not present forSU(N). For instance, the groupsSp(N)

are simply connected and all have the same centerZ(2). The first group of this sequence isSp(1) =

SU(2) = Spin(3); the next one isSp(2) = Spin(5), which is also the universal covering group of
SO(5). In Sp(2) Yang-Mills theory the only stable string is the one connecting two fundamental
sources in the{4} representation. The adjoint representation is{10} and its string breaks by pair
creation of gluons. However, in contrast toSU(N) groups,Sp(2) has a center-neutral representation
{5} with a smaller size than the adjoint representation. Since inSp(2)

{5}⊗{10} = {5}⊕{10}⊕{35}, (3.1)

a single gluon can screen a charge in the representation{5} only to a{10} or a{35} representation,
but not to a singlet. It is natural to expect that the unstable{5}-string has a smaller tension than
the adjoint string. Thus, although a charge in the representation{5} needs two adjoint charges to
be completely screened, the string should break in a single step by the dynamical creation of four
gluons, without any intermediate string decay.

The relevance of the center of the gauge group in the process of string decay is also an im-
portant issue to be addressed. The simplest Lie group with a trivial centeris the exceptional group
G(2). Despite the triviality of the center, which implies that there are no stable strings, G(2) Yang-
Mills theory confines color [24] and it has a first order deconfinement phase transition [25, 26]. In
fact, the order of the deconfinement phase transition is not controlled by the center symmetry but
by the size of the gauge group [27]. InG(2) Yang-Mills theory, the string connecting charges in
the fundamental{7} representation is unstable. In fact, it ultimately breaks since the{7} repre-
sentation can be completely screened by gluons in the adjoint{14} representation. More precisely,
since inG(2)

{7}⊗{14} = {7}⊕{27}⊕{64}, (3.2)

a single gluon can eventually screen a charge{7} only to a{27} or a{64}. Casimir scaling has
been observed forG(2) Yang-Mills theory in (3+1) dimensions, including the{27}- and the{64}-
string [28]. Hence, the string tensions of the{27}- and of the{64}-string are larger than the tension
of the{7}-string. This makes the{7}-string stable against decay due to the creation of a single pair
of gluons. A similar argument makes the{7}-string stable also against decay due to the creation
of two pairs of gluons. Since a{7} charge can be completely screened by three adjoint gluons, we
expect that the fundamental{7}-string has no intermediate decay and breaks in a single step by the
simultaneous creation of six gluons.
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