PROCEEDINGS

OF SCIENCE

The lattice ghost propagator in Landau gauge
up to three loops using
Numerical Stochastic Perturbation Theory

F. Di Renzo
Universita di Parma & INFN, Viale Usberti 7/A, 1-43100 Paririgaly
E-mail: francesco. di renzo@i s. uni pr.it|

E.-M. llgenfritz

Institut fir Theoretische Physik, Ruprecht-Karls-Unaitit Heidelberg, Philosophenweg 19,
D-69120 Heidelberg, Germany

E-mail: | | genfri @hysi k. hu-berlin. de

H. Perlt
Institut fir Theoretische Physik, Universitat Leipzig, P60 920, D-04009 Leipzig, Germany
E-mail: Hol ger. Perlt @t p. uni -l ei pzi g. dg

A. Schiller*
Institut fir Theoretische Physik, Universitat Leipzig, P60 920, D-04009 Leipzig, Germany
E-mail: Ar wed. Schil l er @t p. uni -1 ei pzi g. del

C. Torrero

Institut fir Theoretische Physik, Universitat Regensbungiversitatsstr. 31,
D-93053 Regensburg, Germany

E-mail: chri stian. torrero@bhysi k. uni -regensburg. de|

We complete our high-accuracy studies of the lattice ghogpggator in Landau gauge in Nu-
merical Stochastic Perturbation Theory up to three loopspw¥sent a systematic strategy which
allows to extract with sufficient precision the non-loganiic parts of logarithmically divergent
quantities as a function of the propagator momentum squartee infinite-volume ané — 0
limits. We find accurate coincidence with the one-loop refar the ghost self-energy known
from standard Lattice Perturbation Theory and improve agevipus estimate for the two-loop
constant contribution to the ghost self-energy in Landaugga Our results for the perturbative
ghost propagator are compared with Monte Carlo measurenuérthe ghost propagator per-
formed by the Berlin Humboldt university group which hasdifiee exponential relation between
potentials and gauge links.

The XXVII International Symposium on Lattice Field Theory
July 26-31, 2009
Peking University, Beijing, China

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&@vmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:francesco.direnzo@fis.unipr.it
mailto:ilgenfri@physik.hu-berlin.de
mailto:Holger.Perlt@itp.uni-leipzig.de
mailto:Arwed.Schiller@itp.uni-leipzig.de
mailto:christian.torrero@physik.uni-regensburg.de

The lattice ghost propagator in Landau gauge up to three $oaging NSPT A. Schiller

1. NSPT and Langevin equation

Itis known that standard diagrammatic Lattice Perturbation Theory (LPd9rbes very com-
plicated when studying higher orders of typical physical quantities asmaalization factors.

As an alternative, Numerical Stochastic Perturbation Theory (N&Re®)e.g.[J1])s a powerful
tool to study higher-loop contributions in LPT: thanks to it, higher-loopltesre in fact obtained
without computing vast numbers of Feynman diagrams. Several applicafidisRY have been
reported over the last years, for some latest developments see the additiotributions of F. Di
Renzo, M. Brambilla, C. Torrero and H. Perlt to this conference.

Here we extend our results reported earl[ér[J2, 3] and study the thopegbost propaga-
tor in Landau gauge to make predictions for standard diagrammatic LPT amghce with non-
perturbative calculations.

We use the lattice Langevin equation with stochastic time

0

Eux,u(ti N) =i (OxuSelU]+ Nxu(t)) Uxpu(tin), (1.1)

wheren is Gaussian random nois€g the gauge action andy , the left Lie derivative within
the gauge group. Discretizing the tirhe- nt, the equation is integrated numerically in the Euler
scheme by iteration:

Uxu(n+1;n) = exp(—Fxu[U,n]) Uxu(nin) (1.2)

with the force
FoulU,n] = i(T0x uSe[U] + VT Nxy) - (1.3)

Rescalinge = BT and expanding the gauge linkg{l B~/?)
Uy — 1+ Z)B—'/zuxﬁ'},, (1.4)
>

the Langevin equation at finite time stepurns into a system of updates for each perturbative order
U)E'B, The algebra-valued gauge potentialg, are related to the gauge lattice link fieldg, by

AXJJ - IOgUXJJ . (1.5)
Their expansion is given in the form

Ay — ZJB"/ZAQL (1.6)
>

and is used to enforce unitarity to all orders jn .

Each simultaneous Langevin update is augmented by a stochastic gaugesfegnand by
subtracting zero modes froil!). From the resulting fields the Green functions of interest can be
numerically constructed order by order.

To measure gauge-dependent quantities, exact gauge fixing is nedfedse the Landau
gauge which is reached by iterative Fourier-accelerated gaugedrarasions [[4].
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2. The ghost propagator in perturbation theory

2.1 The ghost propagator in NSPT

It is known that the ghost propagator is defined from the inverse of ddeléev-Popov (FP)
operatorM. In Landau gauge this operator is constructed by using the lattice cavBxidn and
left partial derivativesM = —[0-D(U). Following [B] we use here a definition & which is most
suitable for NSPT.

We introduce the physical lattice momenpg(K,) = gsin(’lk—” = gsin(%) and define
the color diagonal propagator in momentum space as the color trace in tlre agjsesentation

(Ne=3) 1
G(p(k)) = 21 (Trag M~ 1(K)),, - (2.1)

In (1) M~1(k) is the Fourier transform of the inverse FP operator in lattice coordinatespa

A perturbative expansion is based on the mapwi%b - MO - [M*l] ) which allows to
calculate the inverse FP operator in NSPT recursively (i.e., to any finitx arderting the matrix
M results in a closed form)

’ [Mfl] O__ [M(O)} ‘12,\4(!1) [M*l](j) ) (2.2)
=

The momentum space ghost propagator is obtained by sandwibwn{j ") between plane-
wave vectors. The propagator has to be computed from scratch toichasen momentum tuple
(k1, ko2, ks, ks) and different colors of the plane wave. Since we are interested in fitigénmomen-
tum behavior as good as possible, these measurements become relapeelsiex

Multiplying the measured lattice momentum ghost propagator either (ah? or p?, two
forms of the so-called ghost dressing function are defined:

IV =@p?cl, JO=pcl. (2.3)

The perturbative construction ™ in terms ofA differs from the definition adopted in most
Monte Carlo calculations where a linear relation between the gauge linkszaigg gpotentials is
used.

2.2 The ghost propagator in standard LPT

In the RI-MOM scheme, the renormalized ghost dressing functi®nis defined as

' J(a,p, arr)
R'(p,u,apy) = —— 20 2.4
(P, M, arr) ANCYTIS (2.4)
with the renormalization conditiodR" (p, i1, ary)|z—,2 = 1. Therefore, the ghost dressing func-
tion J(a, p, ary) is just the ghost wave function renormalization cons&at u, ary) at u? = o.

We represent the expansion of the bafa p, ary) to n-loop order by

n i , k
Jnfloop(aj P, aRI’) =1+ ZGIRI/ Z Z:?II( <;g> , R |og(ap)2. (25)
i= k=0
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The leading log coefﬁciemﬁ'/ coincide with continuum perturbation theory (PT), the subleading
log coefficients;’?lf|i>k>o have to be determined both from continuum PT and LPT in the used
schemezﬁ(',’ has to be found in LPT. Restricting ourselves in these proceedings to bpmloler

in Landau gauge and to quenched approximation (comparg k.g. [6]awee h

/ 9 / 315 / 2439 35 gy
z'f" == 255:_?7 z;'lz_ﬁ+jz'fb. (2.6)
The coefficiemz'f"(; = 13.8257 has been calculated {j [7], a first rough estimatégbﬂwas been
presented by us at Lattice(§ [2].

From agy = ao + (—22loglap) +73.9355 a2 + ... [B, B], with the bare couplingry =
3/(81B), we get for the dressing function

1 1
(312 +310) + =5 (B2L%+ 1L + J20) (2.7)

2—loop — -
J (a,p,B)=1+ B B

with
J11=—0.0854897 J10=0.525314 J,=0.0215195 Jp1 = —0.358423 (2.8)

Among others we have to confirdy o from standard LPT and want to find a precise number for
J o in Landau gauge quenched QCD using NSPT.

3. Results

3.1 Practice of measurements

Very precise measurements for different lattice sizes and differemdvamstepg are needed.
Typically we have of the order of 1000 measurements for each momentum Aliady at finites
the non-integen =1 /2 (no-loop) contributions to the dressing function have to become negligible
compared to the neighboring loop contributions. Examples of the dressintidnJ for n=1,2,3
andn = 3/2 vs. i at different volumes ane = 0.01 are shown in Figurg 1.
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Figure 1: Measured ghost dressing functidrvs. p? for all inequivalent lattice momentum 4-tuples near
diagonal forL = 8,10,12,14,16,20 ande = 0.01. Left: The one-loopg 1), two-loop (38~2) and three-loop
(B3) contributions, right: the vanishingl(8%/2) contribution.
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We have to take the zero Langevin step limit> O for each 4-tupléks, ko, ks, ks) from the
available finitecs measurements at fixed lattice size. This is shown for a particular momentum tuple
atL = 16 in Figure[R. In order to make contact with standard LPT, the liits « andap— 0
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Figure 2: Extrapolation tas = 0 of one- (left) and two-loop (right) ghost dressing funntfor lattice size
16* and momentum tuplél, 1,1, 1): the fitting function contains both a linear and a quadratiotine.

have to be performed additionally.

3.2 Fitting logarithmic quantities on finite L

The dressing functiod at zero Langevin step still suffers from finidap) andO(pL) correc-
tions. Our aim is to extract the finite constants in the power expansion of the Igktast dressing
function Jo with very high accuracy. In[[10] it was pointed out that finite-size effeets be
large when an anomalous dimension comes into play. Having at hand a vdiigtyce sizes, we
address a careful assessment of these effects (the main ideas ethtengmgcedure can be found
in [[LA]). Without entering into details, we summarize that strategy of fitting simedtaslyO(ap)
andO(pL) corrections together using several lattice sizes.

First we subtract all logarithmic pieces (supposed to be universalrmwirk from the dressing
function for each momentum tuple and all lattice sizes. Next we select airt@g)? = ¥ (apy)?,
py = ky (2m/L) with p2,.. < p? < p2. Within that range we identify a s&of momentum tuples
(k1, ka2, ko2, ks) which is common to all chosen lattice sizes. The data in that set are assumed to ha
the sameplL effects. Since finite-volume effects decrease with increasing momentuamestjuve
choose as reference fitting point — for an assumed behavioeab — the data point ap? ~ p2 .«
from the largest lattice size at our disposal.

Next we perform a non-linear fit using all data points of differefitom that seSand the ref-
erence point correcting for finite siz€4, no functional form) and assuming a functional behavior

for H(4) (p" = Y . pp):
. 2y _ 1 2~2~I074 4~22~4~I076
Jio(ka, ko, ks, ke, p°) = Jio+a" | G p +vp2 +a’ | B(p)°+Nnp +0p2 +
+ 3 Cno[m {ki ko, ks ka}], i=12,... (3.1)

meS
Finally we vary the momentum squared window and find an optjiakgion which allows
us to find the 'bestJ; o. In Figure[B we show suchyg-behavior for a non-linear fit to the one-loop
dressing function.
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Figure 3: x2-behavior of the non-linear fit for the one-loop dressingction in possible lattice momentum
windows.
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Figure 4: L =8,...,20,S=7; black filled circles: log-subtracted data from alloweglés; blue starspL
effects removed; red open circléd:= 0, H(4) effects removed. Left: one-loop order; right: two-looperd

An example of a combined fit at low? is shown in Figurg]4 for the first and the second loop
as a function ofap)?. We observe that the numerical dateat 0 from the chosen set — with all
logarithmic contributions subtracted — scatter significantly (black filled circteajtching off the
O(pL) corrections €, = 0 in the fit form {3.1L)), the blue stars line up in 'rows’ according to the
different hypercubic invariants at infinite lattice volume. The refereraat{here the rightmost
point) is of course unchanged. Finally, after removing also the non-rotdtiyypercubic effects
(leaving onlya # 0 in (B.3)), we obtain a smooth (almost linear) curve formed by the red open
circles which directly points towards the fitting constantin the zero lattice spacing limit.

To make a more realistic estimateJp, we have collected fit results from five different s8ts
with minimal x2. From these sets we obtain the following (preliminary) constants in Landagega
(Jf5'=0.525314)

Jio=05252046), Joo=14894). (3.2)

The two-loop constant can be transformed into the RI'-MOM scheme in thagey Our prediction
for that small contribution igxh = 9.2(2.7).

Using the foundl, g as in/put for the non-leading log contribution to three loops, we are in the
position to estimatds o as well. This analysis is in progress.
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3.3 Comparison to Monte Carlo data

Using theA = —logU definition as in NSPT, the Berlin Humboldt university group has pro-
duced Monte Carlo results for the ghost and gluon propagator in Layelaye and different gauge
couplings [IR]. Since it is assumed that non-perturbative contributionsircaite mainly the in-
frared, it is of interest to compare directly the perturbative ghost mirgganction obtained in
NSPT with its Monte Carlo counterpart for each common momentum tuple.

We calculate the perturbative dressing function at a given lattice volume stdimon® loop
ordernmay for a given lattice coupling as follows:

L
J=73% 53" (3.3)
n
nZl B
In Figure[b we compare the perturbative ghost dressing function at |asiied. = 16 to
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Figure 5: Three-loop NSPT of the ghost dressing function in comparisdvionte Carlo at tw¢8 values.

Monte Carlo data at two differerf values. We observe that in not less than three-loop accuracy
the perturbative ghost propagator at lar@eis approximately able to describe the full two-point
function in the large momentum squared region.

The situation becomes even worse in comparison with Monte Carlo when tryuefitee a
perturbative running coupling from

6 - ~
= WJ(B)ZG(B)- (3.4)

ag"*P(p, B)
HereG is the gluon dressing function (sde][{B, 3], used in NSPT in the sameaag3uiThis is
demonstrated in Figufg 6. So more loops would be necessary to find actatigtagreement with
the non-perturbative data at largest lattice momenta.

4. Summary

We have presented a detailed perturbative calculation of the lattice glopstgator in Landau
gauge using NSPT. The one-loop consthnt perfectly agrees with knowwi — oo result. The two-
loop constantl, o is determined with good accuracy for the first time. We have performedya ver
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Figure 6: Three-loop NSPT ofig in comparison to Monte Carlo (partly with specially choseatyBkov
sectors) for twq3 values.

careful analysis of all necessary limits. A technique to simultaneously ddabeth O(ap) and
O(pL) corrections is described in some detail. A comparison with Monte Carlo dat@ gfhibst
propagator and the running coupling shows that additional loops adedéde better describe the
asymptotically prevailing perturbative tail at large lattice momenta.

References

[1] F. Di Renzo and L. ScorzatdHEP 10(2004) 073 pr Xi v: hep- | at / 0410010].

[2] F. Di Renzo, E.-M. ligenfritz, H. Perlt, A. Schiller and Correro,PoS( LATTI CE 2008) 217
[BrXiv:0809.4950[hep-I4t]].

[38] F. Di Renzo, E. M. ligenfritz, H. Perlt, A. Schiller and Torrero,PoS( Conf i nenent 8) 050
[arXiv:0812.3307[hep-Igt]].

[4] C.T. H. Davies et al.Phys. RevD 37(1988) 1581.
[5] H.J. Rothe,World Sci. Lect. Notes Phy&£9(1997) 1.

[6] J. A. GraceyNucl. Phys. B562(2003) 247 far Xi v: hep- ph/ 0304113].

[7] H. Kawai, R. Nakayama and K. SedNucl. Phys. BL89(1981) 40.
[8] A. Hasenfratz and P. HasenfraBhys. Lett. B33 (1980) 165.

[9] M. Lischer and P. Weisucl. Phys. B452(1995) 234 fr Xi v: hep- | at / 9505011]].

[10] F. Di Renzo, V. Miccio, L. Scorzato and C. Torrekyr. Phys. J. (51 (2007) 645
[Ar Xi v: hep-1at/0611013).

[11] F. Di Renzo, L. Scorzato and C. TorreRpS( LATTI CE 2007) 240 [prXiv:0710.0552[hep-I4t]];
F. Di Renzo, M. Laine, Y. Schroder and C. TorredblEP 0809(2008) 061
[arXiv:0808.0557[hep-Igt]];

[12] C. Menz, diploma thesis, Humboldt-Universitat zu Be(009); we acknowledge receiving those
data prior to publication.

[13] E.-M. ligenfritz, H. Perlt, and A. SchilleRoS( LATTI CE 2007) 251] [arXiv:0710.0560[hep-I3t]].



http://xxx.lanl.gov/abs/hep-lat/0410010
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2008)217
http://arxiv.org/abs/0809.4950
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(Confinement8)050
http://arxiv.org/abs/0812.3307
http://arxiv.org/abs/hep-ph/0304113
http://arxiv.org/abs/hep-lat/9505011
http://arxiv.org/abs/hep-lat/0611013
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2007)240
http://arxiv.org/abs/0710.0552
http://arxiv.org/abs/0808.0557
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2007)251
http://arxiv.org/abs/0710.0560

