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We use Laplacian Center Gauge to reveal the vortex content of single SU(2) calorons and multi-
caloron systems at different holonomies. The vortex surfaces in a single SU(2) caloron consist
of two parts that are induced by the constituent dyon charges and by the twist between the dyons,
respectively. The latter part percolates in a caloron ensemble at maximal nontrivial holonomy.
This finding fits perfectly in the confinement scenario of vortices and shows that calorons are
suitable to facilitate the vortex confinement mechanism.

The XXVII International Symposium on Lattice Field Theory - LAT2009
July 26-31 2009
Peking University, Beijing, China

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:bo1.zhang@physik.uni-regensburg.de
mailto:falk.bruckmann@physik.uni-regensburg.de
mailto:ilgenfri@physik.hu-berlin.de


P
o
S
(
L
A
T
2
0
0
9
)
2
3
5

Vortex Content of SU(2) Calorons Bo Zhang

1. Caloron, Monopole and Vortex

Topological excitations are candidates for the mechanism for nonperturbative effects in QCD
including confinement and chiral condensate. The most intensively examined topological excita-
tions are instantons, magnetic monopoles and center vortices. Instantons are solutions of the equa-
tion of motion, thus can be introduced into QCD in a semiclassical approach. It can explain the
chiral condensate naturally through the (quasi) zero mode, but confinement remained unexplained
with instantons. On the other hand, Abelian monopoles and vortices are not of semiclassical na-
ture, but represent defects of codimension 3 and 2, respectively, that remain after gauge fixings and
projections. They can explain confinement, and some quantitative studies [1] show that they are a
prerequisite for the occurrence of topological charge in general.

Calorons [2, 3, 4] are generalizations of instantons at finite temperature. The asymptotic Polya-
kov loop plays a key role in determining the properties of calorons. In SU(2), we parameterize it as
P(~x→ ∞) = e2πiωσ3 with the holonomy parameter ω . A nontrivial holonomy caloron (ω 6= 0,1/2)
with unit topological charge is composed of N dyons (magnetic monopoles) in gauge group SU(N),
namely its action density can have N peaks located at N constituent dyons when these are well
separated. A picture for the action density of a SU(2) charge-one caloron is shown in Fig. 1. In
SU(2), a charge-one caloron has two constituent dyons, one has magnetic charge +1 (M dyon),
another has magnetic charge -1 (L dyon), the distance between the two dyons is πρ2/β , where ρ

is the size parameter of the caloron (and β = 1/kBT ). Furthermore, one of the dyons has a twist
of unit one relative to the other dyon (here, a twist is a nontrivial gauge transformation in time
direction). In periodic gauge, the M dyon is approximately static while the L dyon carries a unit
twist [3]. It can be shown that the topological charge of the caloron equals the magnetic charge
times the relative twist of its constituent dyons [3]. In this way, calorons and magnetic monopoles
are close relatives.

We will think of the traced holonomy trP(~x→ ∞) = 2cos(2πω) as identified with the center
symmetry order parameter 〈trP〉, such that maximal nontrivial holonomy ω = 1/4 stands for the
confined phase, whereas other holonomies amount to temperatures T > Tc.

Vortices and magnetic monopoles are also closely related with each other. In four dimensional
space time, vortices form two dimensional world sheets while magnetic monopoles are one di-
mensional world lines. In the combination of Laplacian Abelian Gauge (LAG [5]) and Laplacian
Center Gauge (LCG [6]), magnetic monopole worldlines reside on the vortex sheets [7].

Here we are going to find the relation between SU(2) caloron and vortices. This includes the
vortices in individual calorons depending on the holonomy, the intersection of different parts of
vortices recovering the topological charge and the dependence of vortices in a caloron gas on the
holonomy which has an interesting relation to percolation and confinement.

Figure 1: Action density of a SU(2) caloron shown in logarithmic scale, from [3].
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2. Laplacian Center Gauge

There are different gauge fixing methods to find vortices, such as Direct Maximal Center
Gauge (DMCG) [8] and Indirect Maximal Center Gauge (IMCG) [9]. An alternative is the Lapla-
cian Center Gauge (LCG), which can be viewed as a generalization of DMCG avoiding the Gribov
copy problem [6]. To this end one computes the two lowest eigenvectors (φ0,φ1) of the gauge
covariant Laplace operator in the adjoint representation, which we do by virtue of ARPACK.

In LCG, the first step is to rotate the lowest mode φ0 to the third color direction with a gauge
transformation V , Vφ0 = |φ0|σ3 , i.e. to diagonalize it. The remaining Abelian freedom of rotations
around the third axis, V → vV with v = exp(iασ3), is fixed (up to center elements) by demanding
a particular form of the first excited mode, (vVφ1)a=2 = 0 and (vVφ1)a=1 > 0.

Defects of this gauge fixing appear when φ0 and φ1 are collinear, because then the Abelian
freedom parameterized by v remains unfixed. It was shown in [6] that points x where φ0(x) and
φ1(x) are collinear define the (generically two-dimensional) vortex surface. This includes points x,
where φ0 vanishes, φ0(x) = 0, which define monopole worldlines in the Laplacian Abelian Gauge
(LAG) [5].

We detect the center vortices in LCG with the help of a topological argument: after having
diagonalised φ0 with V , the question whether φ0 and φ1 are collinear amounts to Vφ1 being diagonal
too, i.e. having zero nondiagonal components. We therefore inspect the projection of Vφ1 onto the
(σ1,σ2)-plane for all four points of each plaquette, see Fig. 2. By assuming continuity of the field
on the plaquette, a nontrivial winding number of the 2d vector (V φ 1

1 ,V φ 2
1 ) around the edge of the

plaquette indicates a zero inside. In this case we say that the midpoint of that plaquette belongs to
the vortex surfaces. The vortex sheet extends in dual directions from the midpoint. It consists of
plaquettes of the dual lattice shifted by a/2 in all directions with respect to the original lattice.

The first step of LCG, i.e. Vφ0 = |φ0|σ3 can include gauge transformations varying rapidly
in space, this would result in artificial winding numbers and thus unphysical vortices. However, to
detect vortices, the lowest eigenvector can be fixed to any direction [6], i.e. fixed to different color
directions on different points. Thus, plaquette by plaquette we rotate φ0 to its average direction
over the four sites on the plaquette (which in most cases is a small rotation), afterwards we inspect
φ1 in the plane perpendicular to that direction.

Vφ
1

φV
0

Figure 2: The topological argument to detect vortices on a plaquette: Components of the first excited mode
φ1 that are perpendicular to the lowest mode φ0 (after both have been gauge transformed by V ) are plotted
on all sites of the plaquette. The configuration shown here has a nontrivial winding number, which implies
that the two eigenvectors are collinear in color space somewhere inside the plaquette.
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3. Vortex Surface in a Single Caloron

To reveal the vortex surface in unit charge caloron, we discretise it on N0 = 8 and space
extension Ni � 8 lattices with constituent dyons on the x3-axis and the center of mass fixed at
the origin. After that, we compute the two lowest eigenvectors of the Laplacian operator in the
adjoint representation. The lowest mode we get does not depend much on the size of the lattice, but
the first excited state depends on the ratio of N3 to N1,2. We find that when N3/N1,2 is larger than
1 (such as 80/48), the first excited mode is a singlet, when this ratio is equal to or smaller than 1
(such as 64/64), the first excited mode is a doublet.

This ambiguity reflects the fact that we are forcing states of a continuous spectrum into a finite
volume, which is similar to waves in a potential well thus sensitive to boundary conditions (such
as Ni). Gross features of the adjoint spectrum in a caloron background can be understood from the
spectrum in a constant link background with the same holonomy, see [10] for details.

Using the ’local’ LCG we mentioned in the last section, we find that the vortex surface in a
unit charge caloron consists of two parts, a dyon charge induced part (shown in Fig. 3) and a twist
induced part.

If the first excited mode belongs to a doublet, there are two vortex lines connecting the M-dyon
with the L-dyon in every time slice where they exist. For large ρ caloron (ρ & 0.5β ), the M-dyon
and L-dyon exist in all time slices. Then the vortex sheet is completely in space-time direction. For
a small ρ caloron, the monopole world line is closed and extends over a finite time interval. The
vortex sheet forms a sphere that includes also space-space plaquettes. Taking another eigenvector
in the doublet, the vortex lines will be rotated around the x3 axis (in all time slices). This reflects
the axial symmetry of the caloron.

If the first excited mode is a singlet, on the other hand, the dyon charge induced vortex sheet
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Figure 3: Schematic pictures for the dyon charge induced vortex part. The upper row is obtained if the first
excited mode is part of a doublet. The vortex forms a tube or sphere. The lower row corresponds to the
case of the first excited mode being a singlet. The vortex is spanning the (x3,x0)-plane. The cases of large
caloron size parameters ρ are shown on the left, the small ρ cases (with closed monopole worldlines in the
LAG) on the right.
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is the (x3,x0)-plane which contains the monopole world lines. The flux on it changes its sign at the
dyons. Also in this case there are two fluxes running from one of the dyons to the other.

The twist induced part of vortices in a unit charge caloron is not much different if obtained
from the doublet or singlet first excited mode. We find that the shape of this part of vortices depends
strongly on ω . For maximal nontrivial holonomy calorons ω = 1/4 it is a plane between the two
dyons, if ω < 1/4 it is a ‘bubble’ around the L-dyon, and if ω > 1/4 it is a bubble around the
M-dyon (all at fixed time x0). The corresponding pictures are shown in Fig. 4. When this part of
vortices is a bubble (ω 6= 1/4), the size of the bubble also depends on ρ , see [10].

It might be surprising that the bubble only surrounds one of the dyons while both dyons are of
same importance in a caloron. This is resolved by our claim, that the bubble is (approximately) the
boundary between the static region and the twist region in a caloron.

Why is that? Consider a pure twisting-static configuration which mimics the twist:

A0(t,~x) =

{
πσ3/β for~x ∈ S
0 for~x /∈ S

Ai(t,~x) = 0, (3.1)

where S ⊂ R3 is the twist region. We recall that vortices are signalled by contractible closed −12
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Figure 4: Twist induced part of the vortices (‘bubble’) from singlet first excited modes for calorons of size
ρ = 0.6β in (x1,x2,x3) subspace (a time slice) and plotted in units of β . Holonomies from left to right: ω =
0.1,0.12,0.16 (upper row) ω = 0.2,0.25,0.3 (middle row) and ω = 0.34,0.38 (lower row, left panel). The
plot in the lower right corner summarizes the results for ω = 0.10,0.12,0.16,0.20,0.25,0.30,0.34,0.38,0.40
in a two-dimensional plot at x1 = 0. The plane near the boundary in the ω = 0.25 picture is an artifact caused
by periodic boundary conditions.
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time
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Figure 5: Different contours in a pure twisting-static configuration, see text.

loops. We consider different contours as shown in Fig. 5. Loops within the static region (like D,
a Polyakov loop, or E) or contractible loops within twist region (like A) are trivial. On the other
hand, some loops giving −12 within twist region (like B, a Polykov loop) are non-contractible.
Only loops that cross the twist and static region (like C) are −12 and contractible, hence enclose
the vortex surface. It shows that the vortex surface in this configuration is in space-space direction,
it is the 2d boundary between different twists, the time coordinate is not fixed by this argument.

Figure 6: The intersection of the vortices in a caloron at fixed x0 coordinate. Dots indicate the dyons
(monopoles in the LAG).

The dyon charge induced vortex surface in the case of large ρ is completely in space-time
direction, while the twist induced vortices is in space-space direction. These two kinds of vortices
always have two intersection points as shown in Fig. 6. Each of these points gives topological
charge1 1/2, and this recovers the topological charge of the caloron. The general relation of vortices
with topological charge has been worked out in [11].

4. Vortex Surface in Caloron Gases

The caloron ensembles considered in this paper have been created along the lines of Ref. [12].
The 4 dimensional center of mass locations of the calorons and anticalorons are sampled randomly
as well as the spatial orientation of the ‘dipole axis’ connecting the two dyons and the angle of
a global U(1) rotation around the axis ωσ3 in color space. The caloron size is sampled from a
suitable size distribution D(ρ,T ).

Suppose the vortex distribution in a dilute caloron gas forms by a recombination of the vortices
of single calorons, see Fig.7. Then for a caloron gas with holonomy ω 6= 1/4 the space-space

1As well known, an intersection point can contribute topological charge ±1/2.
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Figure 7: Recombination of vortices in caloron gases (schematically) for holonomy parameters ω 6= 1/4
(left) and maximal nontrivial holonomy ω = 1/4 (right).

directed vortices should be separated bubbles, a bubble for each caloron (if these bubbles are not too
close or too large to touch each other). But the situation in a caloron gas with maximal nontrivial
holonomy ω = 1/4 is completely different. The space-space directed vortices in every single
caloron form a plane that tends to extend to infinity. In the result, the vortices of different calorons
touch each other and recombine to form a percolating surface. This scenario is rather independent
of the caloron density or temperature.

We recall that vortices give a linear potential only when they percolate. Percolation means the
sizes of some of the vortices clusters are comparable to the size of the lattice. Several papers have
reported percolation of vortex clusters in Monte Carlo simulated configurations below the critical
temperature [13].

Numerical results for vortices in caloron emsembles with different holonomy are shown in
Fig. 8. These configurations have their calorons located at the same random coordinates, in the
same direction and with the same ρ parameters, the only varying parameter is the holonomy ω . It
can be seen clearly that space-space directed vortices only in the maximally nontrivial holonomy
case form percolating clusters, while the space-time directed vortices percolate independently of
ω . Thus calorons induce confinement for ω = 1/4 and a constant string tension of spatial Wilson
loops. Our results via center vortices agree with other caloron studies showing a similar holonomy-
dependence of confinement manifesting itself in Polyakov correlators [14, 12].

5. Conclusion

Using Laplacian Center Gauge, we find that the vortices in a SU(2) caloron include two parts:
the constituent dyon charge induced part and the twist induced part. The latter part is mainly in
space-space direction and percolates in a caloron ensemble in the case of maximal nontrivial holon-
omy. Under our conjecture this amounts to the confined phase with vanishing Polyakov loop. We
have demonstrated that this behavior can be understood from the dependence of the vortex shape
on the holonomy in individual calorons. This finding fits perfectly in the confinement scenarios of
vortices and shows that calorons are suitable to facilitate the vortex confinement mechanism.

This work has been supported by DFG (BR 2872/4-1).
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