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1. Introduction

Since the introduction of the non-perturbative gluon corsdte by Shifman, Vainshtein and
Zakharov [1] there have been many attempts to obtain reliabimerical results for this quantity.
Soon it became clear that lattice gauge theory providesraipitog tool to calculate it from Wilson
loops. In [2] the plaquette was used whereas larger Wilsopddiave been investigated in [3].
From the plaguett® the non-perturbative gluon condenséfes G) is conventionally derived from

the relation 2 [ —bo?
4 —0Do g
a%[ B0 (=GG), (1.2)

wherelby is the first coefficient of th@-function andPyc is the plaquette measured in Monte Carlo.
In (1.1) itis assumed that the non-perturbative part sdideshe fourth power of the lattice spacing
a. However, there were speculations that there could be eaHpative contributions which scale
like a® [4]. In the last decade the application of Numerical Stothaerturbation Theory (NSPT)
[5] pushed the perturbative order Bfe: up to ordem = 10 [6] and evem = 16 [7]. This strongly
supports to use (1.1) for the determination( G G).

Besides the determination ¢fG G) there is a general interest in the behavior of perturbative
series in QCD (for a recent investigation see [8]). Obsdevghantities can be written as series of
the form

a
n

I:)MC = I:’pert -

Q~ 3 an”, (12

where A denotes some coupling. It is generally believed that thesiesare asymptotic, and
assumed that for largethe leading growth of the coefficierdig can be parametrized as [9]

an ~ C1(C2)"T(n+Cg), (1.3)

i.e., they show a factorial behavior. Using the techniqu&8PT one reaches orders of the per-
turbative series where a possible set-in of this assumeavimehcan be tested. There is a recent
paper of Narison and Zakharov [10] where the authors disthesslifference between short and
long perturbative series and its impact on the determinaifd G G).

In this paper we present perturbative calculations in NSPowrdem = 20 for Wilson loops
for lattice sized * with L = 4,...,12. The computation fdr = 12 were performed on a NEC SX-9
computer of RCNP at Osaka University, all others on Linux/Hftusters at Leipzig University.
We calculate the Wilson loops in quenched QCD with plaqugdigge action.

2. NSPT calculation up ton= 20

NSPT allows perturbative calculations on a lattice up tglaodern which never will be
reached by the standard diagrammatic approach. The dlgoi# introduced and discussed in
detail in [5, 11] - we will not present it in this paper. We onkant to point to some essential
topics:

e The computer implementation of NSPT requires the dis@#tin of the so-called (rescaled)
Langevin timer
T—1Tc=ke/B, k=0,12,....
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(9° = 6/ is the bare lattice coupling). Practically, this means thatcorresponding quan-
tities are measured for different small but fine The final result is obtained in the limit
€ — 0. This must be done with great care in order to obtain rediabimeric results.

The connection to infinite volume is achieved by the limit: co which requires an additional

extrapolation of the corresponding finlteresults.
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Figure 1: Extrapolatiore — 0 for Wi for 1-loop (left) and 20-loop (right) fok = 8.

In Fig. 1 we show the extrapolatian— O for lattice sizeL = 8 for a plaquette, where we use
a general quadratic ansatzdror the fitting function.

We write the general expansion of a Wilson loop of dit& M in terms of the bare lattice
couplingg as

20

W = zOWN(”& . (2.1)
e

Depending on the loop-siZ&, M) we found alternating signs for the perturbative coefficsiwt?\zl

for smallern whereas for largem they turn into a smooth asymptotic behavior. An examplevemi

in Fig. 2 (left) forL = 12.

A typical extrapolation td. — o for the plaquette is shown on the right side of Fig. 2. Bali[12
has computed one- and two-loop contributions to Wilson $oopvarious sizes in the standard
diagrammatic approach for finite A comparison of our one- and two-loop NSPT results with his
results is given in Table 1. Based on the results given bywBalixed the functional dependence of
theL — oo extrapolation. However, it should be empasized that thisapwrlation becomes worse
for larger loop sizegN,M).

3. Perturbative seriesat large order

The order of perturbation theory we have reached in our tlons allows to study the large
order behavior and to test some models concerningnttaiependence of the coefficients. This is
essential in order to compute the perturbative part of thisaitiloops as precise as possible. In
order not to interfere with possible extrapolatidn-{ o) effects we investigate this for finite
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Figure 2: Coefficients for various Wilson loops (left). Extrapolatio — o for n= 10 (right).

Table 1: Comparison of one- and two-loop results for NSPT and stahajgproach

Waun L NSPT (1-loop) Bali(1-loop) NSPT (2-loop) Bali (2-loop)

W, 4 —0.8746813)  —0.87500  01040407) 0.10406
6 —09075712)  —0.90762  01183Q10) 0.11837
8 —09116408)  —0.91141  01200§08) 0.11993
12 —09125903)  —0.91261  01203§04) 0.12038
Wss 6 —15008430)  —1.50093  06090634) 0.60866
8 —15287323)  —152803  06369323) 0.63632
12 -15352647)  —153533  06437(13) 0.64360
Wy 8 —21412844)  —2.14016  15235%70) 152331
12 —2.1695Q24)  —2.16922  15717860) 1.57006

3.1 Heuristic model

In [13] the authors propose to use a series expansion forrditguerhich shows a power-like
singularity

Wip~ (1—ug?)Y = > lenl—m (ug?)" = ; cng?. (3.1)

n
From (3.1) one derives the ratio of successive coefficignés (slightly modified by a parameter
to account for a small curvature)
1
fn=Cn/Cn-1=U (1— ﬂ) : (3.2)

n+s

4
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In a Domb-Sykes plot F, plotted against An - this is almost a straight line. In Fig. 3 one observes
thatr,, for Wy 1 follows this simple functional form almost ideally.

However, the corresponding curves for larger Wilson loopsnoderate size have a more
pronounced non-linear dependence ¢gn &s can be seen in Fig. 3. This suggests to generalize
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Figure 3: Domb-Sykes plot for varioudm together with their fits (3.3).

ansatz (3.2) by adding an extra poweni(for a detailed discussion see [14])

N’ +(s—q—1)n+t

S (3.3)

f'n==0Cn/Cho1=U

Fort = O relation (3.3) is identical to (3.2). It gives a hyperbaiaiDomb-Sykes plot. In this paper
we assume that the intercaphas a universal value for all loop siz@¥,M). It is determined from
Wi1 which has been computed most precisely. The other parasiigtert) depend orfN,M). The
corresponding curves are shown in Fig. 3. They are obtaired fhe fit ansatz (3.3) where the
parameters are determined in the intervat & < 20. In this region the perturbative coefficients
of the considered Wilson loops show a common asymptotic \ieliaas can be seen in Figure
2 (left).

There were speculations that already at order 10 the perturbative coefficients show a fac-
torial growth due to renormalon contributions [4, 6] (for etailed investigation of this point see
also [8]). For the plaquette we plot in Fig. 4 the ratjoovern for the ansatz (3.2) (HRS) and the
renormalon inspired model as given in [4, 6] (BDMO). We do abserve a factorial growth, at
least in the regiom < 20 and for our lattice sizes.

3.2 Boosted perturbation theory

It is well-known that the bare lattice couplirgyis a bad expansion parameter due to lattice
artefacts like tadpoles. There is a hope that by redefiniagdiiplingg into a boosted coupling,
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Figure 4: Comparison of, of the plaquett&V; for HRS and BDMO models

and the corresponding rearrangement of the series a bettegrgence behaviour can be achieved.
For the plaquett® = W1 we use the replacements

P
I:)pert.,b

n* n*
o — g% = Poert(9,n") =1+ Z W]_(;T) " — Ppertb(Gb, ") =1+ Z Wb(ﬂ)lgﬁn, (3.4)
n=1 n=1
wheren* is the maximal loop order.
Boosted perturbation theory has been applied to improveéneirbative series for the pla-
quette for the first time by Rakow [7]. He showed tRgd:t»(gn, N*) reaches a stable plateau much
earlier thanPpert(g,n*) as a function of*. Fig. 5 (left) shows that the boosted coefficie\/\q%'l)1
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Figure5: Coefficients for naive and boosted LPT (lefat 3 = 6.2 as function ofh* (right).

oscillate but rapidly become very small. Of course, one khaat with caution in the region of
where|Wb(q)l| ~ 1077. The superior convergence behavior for the plaquette isodstrated in Fig.
5 (right) confirming the result in [7]. The Monte Carlo resisltaken from [15, 16].
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4. Non-perturbative gluon condensate

As discussed in the introduction there are speculationshehéhe differenc@P = Pyert — Puc
behaves as- a or ~ a*. We can check this by plottingP versusa/ro wherery denotes the
Sommer scale. The functional relation betwgkandry/a has been taken from [17]. In Fig. 6
AP(a/rp) is plotted in the infinite volume limitl{ — o) for both models discussed in the previous
sections. The MC data points have been taken from [15, 16l €Lt-off in the HRS-model data
for largera is due to the convergence radius for the coupling determinethe parameteu in
(3.1).) We make the ansatP(a/rq) = C(a/ro)* and approximat«{ﬂ) ~ 1. This gives for the
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Figure 6: AP(a/ro) with fit curves~ (a/rg)*.
range 01 < a/rp < 0.25
a a
rs (-GG)rrs=163(9), rs (-G G)boosted= 1.80(5). (4.1)

Fig. 6 shows that the data are well described by the ansafa/ro)* over a large range dd.
Inserting , e.gro = 0.5 fm we obtain

(%G G)urs— 0.0392) GeV, (%G G)boosted— 0.043(2) GeV*. 4.2)

One can try to fit the more general ansA2 = C(a/ro)° to the data. For the boosted model and
0.1 <a/ro <0.25 we getd = 3.5+ 0.1 which is not too far fromd = 4.

All given errors are purely statistical, some of the systitnacertainties are at least as large,
and we are planning a more careful error analysis in the aplep [14]. It should be emphasized
that the determination of the gluon condensate dependstetge assumption of large loop order
behavior than in earlier investigations where all contiins beyondn = 10 were obtained by
extrapolation.

5. Summary

In this paper we presented the perturbative calculation itgdn loops of different sizes up
to loop ordem = 20 using NSPT. We compared three models to describe the alagnormalon



Wilson loops at very high order LPT H. Perlt

inspired model (BDMO), a heuristic fit (HRS) and boosted ydration theory. We found that up
to ordern = 20 the resulting curves showaa* behaviour. This supports the claim of Narison and
Zakharov [10] that a behaviouy a2 is due to perturbative series cut a lower order. The valug3 (4
for (4G G) found for HRS and boosted PT are larger than obtained in etivaputations [1, 7, 13].
The gluon condensate can also be obtained from larger aasijanmetric Wilson loops serving as
an additional check. We hope to come back to this problem4h [1
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