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The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in
terms of the Abelian fields and monopoles extracted from non-Abelian link varialitbeut
adopting gauge fixingFirst, the static quark-antiquark potential and force are computed with the
Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be
identical to the non-Abelian string tension. These potentials also show the scaling behavior with
respect to the change of lattice spacing. Second, the profile of the color-electric field between a
quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-
electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian
color direction. The parameters corresponding to the penetration and coherence lengths show the
scaling behavior, and the ratio of these lengths, i.e., the Ginzburg-Landau parameter, indicates
that the vacuum type is near the border of the type 1 and type 2 (dual) superconductors. These
results are summarized in which the Abelian fundamental charge defined in an arbitrary color
direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state
in any Abelian color direction corresponds to the physical color-singlet state, this effect explains
non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of
color confinement due to the dual Meissner effect caused by Abelian monopoles.
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Gauge invariance of the color confinement mechanism due to the Abelian dual Meissner effect
Katsuya Ishiguro

1. Introduction

Color confinement in quantum chromodynamics (QCD) is still an important unsolved prob-
lem. 't Hooft [ and Mandelstani]] conjectured that the QCD vacuum is a kind of dual supercon-
ducting state caused by condensation of magnetic monopoles. The color charges are then confined
inside hadrons due to the formation of the color-electric flux tube through the dual Meissner effect.

An interesting idea to realize this conjecture is proposed by 't HEbfslich that SU(3) QCD
can be reduced to an Abelian [U()heory by adopting a partial gauge fixing, and the color-
magnetic monopoles appear accordings¢SU(3)/[U(1)]?) = Z?. The role of monopoles for
the confinement mechanism is investigated extensively on the lattice by applying Abelian projec-
tion in the maximally Abelian (MA) gaugéq 5], where monopoles are extractada DeGrand-
Toussaint[@ as in compact U(1) lattice gauge theory. It is then found that the results strongly
support the dual superconducting scendrdg @, 10, 11, 12 [I3. The confining properties are
dominated by the Abelian fieldEl[[@ and monopoledd [I4 [I5 [1§ , which are called Abelian
dominance and monopole dominance, respectively. The color-electric flux is squeezed by the dual
Meissner effectl 17, [I2 [I3. Moreover monopole condensation is confirmed by the energy-
entropy balance of the monopole trajector®§ [I7 [1§. These results indicate that there must
exist a dual Ginzburg-Landau (GL) type theory as an infrared effective theory of QER{).

However, there are still serious problems to prove this scenario. First, there are infinite ways
of the partial gauge fixing. Since the behavior of the monopoles can depend on the gauge choice,
it is not clear if the lattice results in the MA gauge are universal. Second, as the 't Hooft scheme
essentially uses the Abelian degrees of freedom, it is not explained how non-Abelian color charges
are confined.

Recently, we obtained clear numerical evidences of Abelian dominance and the dual Meissner
effect in local unitary gauge®]l] and without adopting gauge fixin@3 23 in SU(2) lattice
gauge theory, where we have used the DeGrand-Toussaint mond@pkesip the MA gauge.
These results provide us with the following idea ; there must exist a gauge-invariant mechanism
of color confinement due to Abelian monopolBd[25. In this paper, we aim to show detailed
numerical evidence of how these ideas are realized.

The paper is organized as follows. In Sg8¢.we compute the static quark-antiquark potential
and the force with the Abelian and monopole Polyakov loop correlators. Ii3Se® investigate
the correlation function between the Abelian operators and the Wilson loop. IHSee.discuss
implications of our results, i.e., the Abelian fundamental charge defined in an arbitrary color di-
rection is confined by the dual Meissner effect. The final se@i@devoted to conclusion and
remarks. Details can be found in the publicatigd, 23 .

2. Abelian dominance and monopole dominance

We explain how to extract the Abelian fields and the color-magnetic monopoles from the ther-
malized non-Abelian SU(2) link variablé (s) =UJ(s)+id-Uy(s) whered = (0, 02,0%) is the
Pauli matrix. Abelian link variables in one of the color directions, for example, irvtheirection
are defined asy(s) = cos6y(s) +io* sinf(s) where6(s) = arctan(Uj}(s) /U3(s)) correspond
to the Abelian fields. Without gauge fixing the Abelian fields in any color directions should be
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equivalent. We then define the Abelian field strength tensors as

WhereG_)W € [-m,m andnyy(s) is an integer corresponding to the number of the Dirac strings
piercing the plaquette. The monopole currents are then defindg by [

1 =~ N 1 N

whered,, is regarded as a forward difference.
The Abelian static potentid¥a is evaluated from the correlation function of the Abelian

Polyakov loop operator
N1 .
Pa = expli Z) B4(s+k4)], (2.3)
K=

separated at a distanBeasVa (R) = —In(Pa(0)Px (R))/(aN), wherea denotes the lattice spacing
andN; the temporal lattice size. We then fit the potential to the usual functional form

Vit (R) = OR—¢/R+ 4, (2.4)

where o denotes the string tension,the Coulombic coefficient, and the constant. By using
the multilevel noise reduction methddg], we showed Abelian dominance such that the Abelian
string tension is the same as the non-Abelian one at zero temperature iBRef. [

The monopole part of the Polyakov loop operator is extracted as follows. Using the lattice
Coulomb propagatoD(s— s), which satisfie®), d,D(s— ) = —ds¢ With a forward (backward)
differenced, (9,), the temporal components of the Abelian fieiiés) are written as

8a(s) = — 3 D(s—)[0yOva(<) + 0a(0y 8, (S))] (2.5)
g

Inserting Eq.[Z.5) [and then Eq.[Z)] to the Abelian Polyakov loof3), we obtain

Pa = Pph' I:’mon;

Pph - exp{—i Ntzlg D(S—l— kzl-— S’)d\ljév4(sl)} )
k=0

Pron = exp{—2ri Ntzlg D(s+ kzl—S’)d(,ﬂM(S’)} . (2.6)
k=0

We callP,p, the photon anémon the monopole parts of the Abelian Polyakov loop, respectively. The
latter is due to the fact that the Dirac strings(s) lead to the monopole currents in EE.2) [6)].
Note that the second term of EB.B) does not contribute to the Abelian Polyakov loop in EG3).

We then compute the static potential from the monopole Polyakov loop correlation function.
However, since EqX8) contains the nonlocal Coulomb propagali(s—s') and the Polyakov
loop is not written as a product of local operators along the time direction, the multilevel method
cannot be applied. Without such a powerful noise reduction method, it is hard to measure the
Polyakov loop correlation function at zero temperature with the present available computer re-
source. Thus we consider a finite temperaflirg: 0 system in the confinement phase. We set



Gauge invariance of the color confinement mechanism due to the Abelian dual Meissner effect
Katsuya Ishiguro

B | NSxN | a(B) (fm) | Neont | NroT
2.20| 243 x4 0.211(7) | 6000 | 1000
2.35| 2486 | 0.137(9) | 4000 | 2000
2.35| 363 x6 | 0.137(9) | 5000 | 1000
2.43| 248 x 8 | 0.1029(4)| 7000 | 4000

Table 1: Simulation parameters for the measurement of the static potential and the forceafr&n and
Pmon- NraT is the number of random gauge transformations.
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Figure 1: Thea(f) dependence of the square rooFigure 2: The volume dependence of the square root
of the non-Abelian, Abelian and monopole string of the string tensions on the 24 6 and 38 x 6 lat-
tensions for the same temperatire- 0.8T.. tices a3 = 2.35.

T = 0.8 T.. In order to examine the scaling behavior of the potential, we simulate the Wilson ac-
tion on the 24 x (N, = 4,6,8) lattices. We also investigate the spatial volume dependence of the
potential for the\; = 6 case. Simulation parameters are summarized in Thble

Since the signal-to-noise ratio of the correlation function®qfPyn, andPnon are still very
small with no gauge fixing, we adopt a new noise reduction mef@#d For a thermalized gauge
configurationU,(s), we produce many gauge cop?d§(s) applying random gauge transforma-
tions. Then we compute the operator for each copy and take the average over all copies. The
results obtained with this method are gauge averaged, thus, gauge invariant.

We obtain very good signals for the potentials. We fit these potentials to the fuNgti®t)
in Eq. 2.4 and extract the string tension and the Coulombic coefficient. Abelian dominance is
seen again as in Re2J. Moreover, we observe monopole dominance, i.e., the string tension of
the static potential from the monopole Polyakov loop correlation function is identical to that of the
non-Abelian static potential, while the potential from the photon Polyakov loop correlation function
contains no linear part. It is remarkable that Abelian dominance and monopole dominance for the
string tension are almost perfect as explicitly shown in Ejgvhich also shows the good scaling
behavior with respect to the change of lattice spacing. We do not see the volume dependence of
the string tension as shown in F[@. These results suggest that although the lattice monopoles
defined in Eq.[Z.2) are gauge-dependent, they contain physical gauge-invariant pieces responsible
for confinement, which show up after taking the gauge average.
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Figure 3: The penetration depth as a function  Figure 4: Tests of the dual Ampére law fit= 1.28
of lattice spacin@(B). forW(R=5,T =5).

3. The Abelian dual Meissner effect

We investigate the correlation functid®{, 2§ between a Wilson loojV and a local Abelian
operator& connected by a product of non-Abelian link variables (Schwinger line)

(TrLW(R T)LToto(r)])
(TrfW(R,T)])

We shall use the cylindrical coordinate @,z) to parametrize the-q system, where the axis
corresponds to thg-q axis andr to the transverse distance. We are interested in the field profile as
a function ofr on the midplane of thg-q system.

In this computation, we employ the improved Iwasaki gauge acB&hWith the coupling
constantsd = 1.10 and 128 on the 32 lattice, and3 = 1.40 on the 46 lattice in order to investigate
the scaling behavior of the correlation functions with less finite-lattice cutoff effects. We use the
Wilson loopW(3,5) at 3 = 1.10, W(5,5) at 8 = 1.28, andW(7,7) at 3 = 1.40. Note that the
physicalg-q distance is the sam&[= 0.32 (fm)] for these Wilson loops.

We measure all cylindrical components of the color-electric figfds) = Eai(s) = ©4(S).
We find that onlyEa; has correlation with the Wilson loop. We then {ia(r))w to a function
f(r) =ciexp(—r/A)+ co and find that the profile ofEa,(r))w is well described by this functional
form, i.e., the color-electric field is exponentially squeezed. The parameterresponds to the
penetration depth are plotted in F@.as a function of lattice spacing(). We find that the
penetration depth shows the good scaling behavior.

To see what squeezes the color-electric field, we study the Abelian (dual) Ampére law derived
from the definition of the monopole current in EG.3),

(0(r)w = (3.1)

|_j X EA = 04§A + 27TR, (32)

whereBai(s) = (1/2>£ijkéjk(5). The correlation of each term with the Wilson loop is evaluated on
the same midplane of theq system as for the profile measurements of the color-electric field. We
find that only the azimuthal components are nonvanishing, which are plotted [l Fgte that if

the color-electric field is purely of the Coulomb type, the curl of the electric field is zero. On the
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Figure 5: The coherence lengthas a function of Figure 6: The GL parameters as a function of the
the lattice spacing(f3). lattice spacin@(f3).

contrary, the curl of the electric field is nonvanishing and is reproduced mostly by the monopole
currents. In any case, the dual Ampére law is satisfied, which is a clear signal of the Abelian dual
Meissner effect. This result is quite the same as that observed in the MA &GS

Let us estimate the coherence length by evaluating the correlation function between the squared
monopole density/(s) = kﬁ (s) and the Wilson lood3(. We then fit the profile o’(kﬁ(r)}w to the
functional formg(r) = ¢, exp(—v/2r /&) + ¢;, where the parametércorresponds to the coherence
length. The coherence length shows the scaling behavior as demonstrate@adg-ajfunction of
lattice spacin@(f3).

Taking the ratio of the penetration depth and the coherence length, the GL pargf@eter
A /& can be estimated, which characterizes the type of the superconducting vacuum. The results
are plotted in Fighlagainst lattice spacing(f3). We find that the GL parameter shows the scaling
behavior and the value is about 1. This means that the vacuum type is near the border between the
types 1 and 2 dual superconductors. However, we note that the physical spatial size of the Wilson
loop used in the present simulations is still sm&lsf 0.32 (fm)]. Clearly, further quantitative
studies with larger Wilson loops are needed to determine the definite value.

4. Non-Abelian color confinement

Let us consider what is induced from the above numerical results. Since gauge fixing is not
applied in these computations, Abelian fields in any color directions are equivalent. Thus, our result
is interpreted as that the color-electric fields in all color directions are squeezed and the Abelian
(monopole) string tensions in all color directions are the same as the non-Abelian string tension.
This indicates that QCD contains a gauge-invariant Abelian mechanism of confinement which is
not related to the specific gauge fixing. Namely Abelian monopoles in three color directions are
condensed in the vacuum of the confinement pha&tjo2) QCD.

Let us denote quark fields having chargeland—1/2 in the g3 direction, respectively, as
uz anddsz. Then local mesonic statasUs anddgd_g, are Abelian color neutral in thes direction.
Consider next

u Uz +ds
1 = -
V2

_W-ds o ustds

VzZ 2

. iug —ds

, d )
' V2

) d2
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u; andd; (uz anddy) are quark fields having charg¢2and—1/2 in theo; (02) direction. Using
these expressions, the quark-gluon coupling term is written as

_ 02 1 _ — 1 _ -
PV YA, = 5 (Usyuds+ dayuUs) Ay, — 5 (Uayuds — dayuUs) A

1 _ _
+3 (UgyuUs — d3yyd3)AS (4.1)
= 5(Uyuus — duyudy) A + 5 (U2 — doyudz) A
l _ _
+5 (UaYus — dayuda) Ay, (4.2)

where the first equatiofl[(]) is expressed in terms af andds alone. Consider local mesonic states
uily anddld_l (uzu2 anddzd_z) which are Abelian color neutral in they (o) direction. When we
look at the states; Uy anddld_l in the g3 direction, they are written as the sum of color-neutral and
color-charged states:

_ 1, _ — — _ - 1 _ — — _
uiug = é (U3U3 + d3dsz + usds + d3U3) , didy = é (U3U3 + dsdz — uzds — d3U3) . (4.3)
The same observation applies to the color-neutral stat?gsanddzd_z in the o, direction. However,
we find that

U1 + 0y dy = Uplz + dadyp = U3z + dads (4.4)

are Abelian color neutral in all color directions. The sti&)is nothing but the non-Abelian color
singlet state.

This example tells us that the Abelian color-neutral state in any color directions corresponds to
the physical non-Abelian color-singlet state. Hence, the confinement of non-Abelian color charges
can be explained in terms of the Abelian dual Meissner effect due to Abelian monopoles.

5. Concluding remarks

We make some concluding remarks. The Abelian gauge fields extracted from the thermalized
non-Abelian link fields contain originally topological monopoles responsible for the confinement
mechanism of non-Abelian color charges even in the continuum limit. Our results presented in this
paper are almost the same as those obtained in the maximally Abelian gauge. This suggests that the
MA gauge fixing is the easiest method to extract the physical ingredients of the monopoles, since
we do not need very precise time-consuming simulations in the MA gauge as done here.
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