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The flux tube between a quark and an antiquark in Coulomb gauieagined in the gluon-
chain model as a sequence of constituent gluons bound &rgatHCoulombic nearest-neighbor
interactions. We diagonalize the transfer matrix in SUéide gauge theory in a finite basis of
states containing a static quark-antiquark pair togetliterzero, one, and two gluons in Coulomb
gauge. We show that while the string tension of the colori@ob potential (obtained from the
zero-gluon to zero-gluon element of the transfer matrix@rstioots the true asymptotic string
tension by a factor of about three, the inclusion of a fewestatith constituent gluons reduces
the discrepancy considerably. The minimal energy eigémstiathe transfer matrix in the zero-,
one-, and two-gluon basis exhibits a linearly rising patmwith the string tension only about
1.4 times larger than the asymptotic one.
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1. Color-Coulomb potential and gluon-chain model

The color-Coulomb potential, i.e. tHe-dependent part of the energy of a physical state of
a heavy quark-antiquark pair at distariRén Coulomb gauge, was shown to represent an upper
bound on the true static quark-antiquark potential [1]. Mtigal simulations demonstrated that it
was asymptotically linear and its string tensian,, was measured to be 2-3 times larger than
the standard asymptotic string tensioRsymp[2, 3].

In this context, a series of questions naturally arises: ldovilux tubes form in the Coulomb
gauge? What mechanism is behind the collimation of colectdt fields into flux tubes? How
does it reduc@coy t0 Tasymp?

In the gluon-chain model, proposed first by Tiktopoulos [ddl dater developed by Thorn and
one of the present authors (J.G.) [5], the flux tube betweamgkapnd an antiquark is visualized
as a sequence of gluons. As a heavy quark and antiquark maefemm each other, a chain of
constituent gluons arises between them. The constituaohglare bound together by Coulombic
nearest-neighbor interactions. Schematically (see Fig. 1

|WeRan) = g(0) {ao + 1A+ a2AA+ azAAAT ... } d(R) [Wo). (1.1)

The goal of the present study was to test, in first-principlenarical lattice Monte Carlo
simulations, the conjecture that constituent gluons dagedhe magnitude of the static quark-
antiquark potential, and to measure the constituent glooteat of the QCD flux tube in Coulomb
gauge. (For an early attempt in the same direction see Ref.\l@& will mainly report results of
simulations of SU(2) lattice gauge theoryft= 2.4 on a 22 lattice. A complete set of our data is
contained in Ref. [7].
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Figure 1: The gluon-chain model.
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2. Transfer matrix and static potential

The (Euclidean) time evolution in lattice gauge theory irul@mb (or some other physical)
gauge is governed by the transfer matrix

T =exp—a, (2.1)

where7 is the Hamiltonian in that gauge, aadhe lattice spacing. We used its rescaled form:

T
T = W = exp[—(%” — Eo)a], (22)

whereW, denotes the ground state aBglis its energy.

In an ideal case one would like to diagonalizén the (infinite-dimensional) subspace of states
containing a static quark-antiquark pair separated bytamieR. Then, the static quark-antiquark
potential (in lattice units) could be computed from

V(R) = —109(Tmax), (2.3)

whereTmax is the largest eigenvalue of the rescaled transfer matiixthis subspace, correspond-
ing to the minimal-energy eigenstate. In reality, this paog cannot be realized; instead one has to
reduce the subspace of states considered to a managea&bl&aiinately, if the quark and anti-
guark are not too far apart, one can expect amplitudes @fssteith a large number of constituent
gluons to be negligible, and can seek for the minimal eneiggnstate in a sector containing only
the quark-antiquark pair plus a small number of constitggunns.

So we will diagonalizet in a finite M-dimensional subspace of trial “chain” states:

W) =*(0) QU] °(R) [Wo)  k=1,2,...,M, (2.4)

whereQy are gluonic operators, functionals of the lattice gaugel fidlat depend on quark/anti-
quark positions and some number of variational parameses the next section for a particular
choice of the operator basig);andb are color indices. All quantities of interest can be estadat
from matrix elements

O = (Wilwn) = (3Tr[QlmQv)] ). (2.5)
ta = (W) = (3T [Q(t+ LU (O.HQMUe(R.1)] ). (2.6)

computed by lattice Monte Carlo simulatioh&nowing these matrix elements, one can construct,
via the usual Gram—Schmidt procedure, an orthonormal setiatés{|®dy),k=1,2,...,M}, then

the matrix elements
T = (DT |Dy), (2.7)

and finally determine the largest eigenvaltygyx of the M x M matrix T. Such a calculation
has to be repeated for various variational-parameter eetetermine the one which minimizes
—log(Tmax) at a giverR. An estimate of the static potential in the sector of vaiadl gluon-chain
states, nicknamed below the “gluon-chain potential”, Wi#n be given by

Vehain(R) = —109(Tmax)- (2.8)

The notationQ(t) indicates that the operat@{U] is evaluated using links on a hypersurface of fixed time
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3. Choice of the operator basis

Our choice of the operator basis in Eq. (2.4) was dictatedhipéiy simplicity, and by some
amount of trial and error.

A gluon chain is assumed to consist of a certain number oftitoast gluons between the
heavy quark and antiquark, and the gluon ordering in coldices is correlated with their spatial
positions between the heavy color sources. As usual, iniatiaral approach the optimal energy
states represent a compromise between kinetic energy trddtion energy. While the kinetic-
energy contribution prefers spatial delocalization ofogis, the Coulombic interaction energy fa-
vors as small as possible transverse displacement fronmehednnecting the quark and antiquark
positions. To satisfy both requirements, the delocatizain the spatial direction was achieved by
a superposition of gluon operators @ along the line joining the sources, while delocalization
in transverse directions could be realized by using “trarss-smoothed” gauge-field operators on
the lattice, in which high-frequency components of the fegle (e.g.) Gaussian-suppressed in the
directions transverse to tlyg-line. The transverse smoothing introduced a single paenpethe
only variational parameter used in our operator Ansatz lfedmv). To further simplify this pilot
study, we restricted the number of constituent gluons tocstwo.

Our procedure was thus the following (for further details Bef. [7]):

e The lattice configurations were fixed to the Coulomb gaugethgdard methods. From
lattice link matriced) we constructed

Ax,t) = % [ui(x,t) ~ UiT(x,t)} . Bt =1 ATr[Ui(x.1)]. (3.1)

e These quantities were then Fourier-transformed, and wpregped high-momentum com-
ponents in directions transverse to the line joiningdf@air (e.g. thej-th direction):

Ai(k,t) — exp[—p(K2—K&)] Ai(k,t),  Bi(k,t) = exp[—p(k*— k)] Bi(k,t), (3.2)

then transformed them back to coordinate space, tAiﬂ)e{b(,t) and Bi(j)(x,t), the A- andB-
fields smeared in directions transversetop is a variational parameter, used to maximize
the largest eigenvalue of the transfer matrix in a choseis lostates.

¢ It was also useful to define, foez |, the averages:
AVt = 3 [AY )+ AV (x-e1)] (3.3)
B (x, t

Dot = 3[BY 000+ (x—et)]. (3.4)

e Finally, a six-state basis was constructed from “transssraoothed’A- and B-fields that
consisted of

zero-gluon state ... Qq(t) =1y, (3.5

one-gluon state ... Qy(t) = A§j>(xo+nej,t), (3.6)
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Ri1 Ril .

two-gluon states ... Qa(t)= Y AEJ)(Xo—Fnej,t)AEJ)(Xo—l—n/ej,t),
n=—2 n=n
Ri2 Ri2

Q=3 Y ;R“>(XO+nej,t)7\§”(Xo+n/ept)v
n=—2 n=n i#]

R-1 .
. Qs(t) = Z)B}’>(xo+ne,-,t) 1o,
Nn—

R-1 .
. Qs(t) = B (o + ney,t) 1. (3.7)
6 n;)i; o+nej,t) 1

The antiquark is assumed to sibt@t the quark ako + Rej. Q1 is the zero-gluon operata@»
the simplest one-gluon operator, with oidield put at different locations between the quark
and antiquark, an®3_g are simple two-gluon operators, containing two powers efghauge
field A. (In two-gluon operatorQs andQ, the interval ofA-field insertions was extended to
up to two lattice spacings outside the region defined by daatiuark positions.)

Of course, one could use a larger set of more sophisticatethtuws and/or more variational pa-
rameters, but we believe that the above choice allowed fitl bk goals of the study in a clear-cut
and convincing, even though only qualitative, way.

4. Results

The calculations outlined in Section 2 with the operatQgsgiven by Egs. (3.5-3.7), were

carried out for SU(2) lattice gauge theory at couplig= 2.2 on a 12 lattice volume, = 2.3

on a 16 lattice volume, angB = 2.4 on a 22 lattice volume. The operatof3, depend implicitly
on a variational parameter, and matrix element§, and the gluon-chain potentisnain(R) were
computed for eacR at twelve values ob, p, = (n—1)Ap, 1<n<12, withAp =0.025 at = 2.2,
andAp = 0.02 atf3 = 2.3,2.4. The choice ofi which minimizesVchain(R) depends on botf and
the quark separatioR. For example, a = 2.4 andR = 9, the optimal value was = 8. All our
data were always obtained from the optimal valu@ #br a given coupling and separation; below
we will, with the exception of Fig. 5, only report results fbve largest coupling studief¥, = 2.4.

4.1 Gluon-chain potential

In Fig. 2 we compare the color-Coulomb potential with theoghchain potential. The latter
was estimated using Eq. (2.8), while the former is giverviy, = —log(Ti1), whereTs; is the
zero-gluon to zero-gluon matrix element, independent efuariational parametgp. We also
display the usual static quark-antiquark potenfjak computed by standard methods from timelike
Wilson loops with “fat” spacelike links. The data were fitted the usual (constant + Lischer +
linear term) function, the extracted string tensions wet&8, 0.095, 0.069 for the color-Coulomb,
gluon-chain, and true potentials, respectively. The isiciu of one- and two-gluon operators affects
the string tension in the expected way: the Coulomb stringita, about 2.3 times larger than the
true asymptotic string tension (@t= 2.4), goes down to the “chain” tension that differs fragyymp
by 38% only. One can imagine that a modest improvement of parator basis plus inclusion of a
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Figure 2: The color-Coulomb, gluon-chain, and “true” static quarkiguark potentials vRat 3 = 2.4 on

22* lattice.

few more constituent gluons would bring the string tensibthe optimal variational gluon-chain
state even closer to the true value.

4.2 Effects of finite volume

Figure 3 shows the dependence of the color-Coulomb potemtéhthe gluon-chain potential
on R for three different lattice volumes. Whil-,, bends away from linearity & ~ L /2, which
is clearly a finite-size effect/.hain SeEMS completely insensitive to the size of the lattice. tiinah
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Figure 3: The color-Coulomb and chain potentials at different lattiolumes.
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zero-gluon and one-gluon energies at 3=2.4
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Figure 4: Energy of the zero-gluon and one-gluon states vs. quatkaark separation.

interpretation of this result is that the long-range fielésloot exist or is greatly suppressed in the
chain state relative to the color-dipole field of the zeroegl state.
4.3 Constituent gluon content of the gluon chain

Finally we studied the constituent gluon content of our ropti variational gluon-chain state
for different quark-antiquark separatioRs In Figure 4 we display th&-dependence of the of the
zero-gluon and one-gluon statesBat 2.4. The energies are given bylog(Ty1), and—log(Ts2)

gluon content in the chain state
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Figure 5: Zero-, one-, and two-gluon fraction of the norm of the vawoia&l state vs. quark-antiquark dis-
tanceRatf =2.2,2.3,2.4.
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respectively. The Coulombic energy of the zero-gluon staid the kinetic plus interaction energy
of the one-gluon state become equaRatbout 1 fm.

One can estimate the gluon content also directly. If we whigeminimal-energy variational
state in our six-state basis BB(R)) = S¢_; ak(R)|®x), then the zero-, one-, and two-gluon frac-
tions are given byr?, a2, and 1- a? — a2, respectively. The results are shown in Figure 5. The
gluon content vsR (expressed in physical units) turns out to be almost indegnof coupling.
The one-gluon content of the minimal energy state becomeal éq the zero-gluon content at
about 1 fm, i.e. at the same distance at which the energiesrof and one-gluon states equalize.

5. Conclusions

A simple variational calculation of a quark-antiquark stat a subspace of zero, one, and two
constituent-gluon states yields its energy less than teeggrcomputed from a zero-gluon state.
This result is not surprising by itself — what appears nweigtiand was not guaranteed from the
beginning is the following:

1. The Coulombic energy of the zero-gluon state rises lip@dth separation, albeit with string
tension higher than the asymptotic tension of the QCD fluetub

2. The linearity of the potential survives addition of a shmaimber of constituent gluons.

3. A few constituent gluons tend to bring the string tensibthe variational state down con-
siderably, to a value closer to the asymptotic string tansicthe QCD flux tube.

4. One begins to see the formation of the gluon chain only atlgantiquark separations of
about 1 fermi.
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