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1. Introduction

RareB decays proceeding through— s flavour changing neutral current transitions provide
particularly sensitive probes for physics beyond the Standard Model. Experimental uncertainties
in B — K*y have been reduced to the few-percent level, and thosB ferK *)¢¢ are presently
around 10 percentl]. So far, measurements are consistent with Standard Model expectations
[2, 3]. Future experiments like LHCb are going to reduce the experimental uncertainties further.
Thus, we are entering an era of precision flavour physics, requiring experimentalists and theorists
to focus on reducing statistical errors and employing multiple cross-checks to further quantify
systematic uncertainties.

Lattice QCD can contribute to this by providing first-principles nonperturbative calculations
of hadronic matrix elements relevant for raBedecays. In this report, we present our current
progress in doing these computations. We use a non-relativistic effective action foigtrerk
called moving NRQCD (mMNRQCD)Y], which helps reduce discretisation errors in the final state
meson at large recoil. This is achieved by giving Bxeeson a significant velocity in the lattice
frame, so that at a giveyf the momentum of the final meson is smaller.

Previous progress of this project was reported #). [n this work, we investigate how far
statistical errors can be reduced with the help of stochastic (random wall) sources, and exam-
ine different fitting strategies. Furthermore, all calculations are now done with thé fGjimg)
MNRQCD action exactly as ir].

This report is organised as follows. We discuss the phenomenology oBrdexzays and
our strategy for the lattice calculation in S€c.Details of the operator matching for heavy-light
currents with mNRQCD are given in Seg. Then, in Sec4 we explain the use of stochastic
sources and compare their effectiveness to point sources using numerical calculations. Finally we
show some preliminary results for the form factors in Semd conclude in Seé.

2. Physics of rareB decays and strategy for the lattice calculation

The starting point for studying weak decays of hadrons is the effective weak Hamiltonian. For
b — stransitions in the Standard Model, the governing Hamiltonin is

gy ® =~ 73V 3 Gl Q) (2.1)
whereGg is the Fermi constanG;(u) are Wilson coefficients taking into account short distance
physics and); are effective local operators. In the Standard Model, there are 10 operators we need
to consider for radiative and semileptonic decays:

Qi = (s¢jv-al(Cjbiv-n Q = (sOv-a(Cbyv-a

Q3 = (Sbv-aYq(QQv-a Qs = (Sbjv-aYq(djdiv-

Qs = (Sbv-aYq(QQva Qs = (S bj)v-aYq(Qjai )v+A

Q = 8e2 rTbs_-G”V(l—}— ¥5) bi Fuy Qs = 8 522 MbS G#v(]; ) by Gﬁv
Q = g=z(Sbhv-allly Qo = gz(Sbv-all)a

170 obtain Eq.2.1), VypViis < ViVt and CKM unitarity are used.
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Figure 1: Penguin and box diagrams governibg— sy andb — s¢¢ in the Standard Model. (Decay of
photon orZ to ¢¢ not shown in the penguin diagram.)
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Figure 2: Decaysh — sy andb — s¢/ via short distance operators in the effective weak theory.
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Figure 3: Long distance contributions can come from charmonium resonanc€s Vieft) or weak annihi-
lation (right). (Weak annihilation is doubly CKM suppressedBor K*.)

The dominant short-distance contributions come fi@m Qg andQ10. They arise from penguin
and box diagrams illustrated in Fid. The hadronic matrix elements of these quark bilinears
(Fig. 2) are straightforward to compute in lattice QCD, at least for some values of initial and
final state momenta. The matrix elements of the quark bilinear currei@s, i@y and Q1o are
parametrised by form factors as follows:

2 __£M2 2 n2
(P(P)|GF*BIB(p)) = () |p* + P — MBq)”Pﬂ i fo<q2>MBq2MPq“, 2.2)
_ ifr(g?
av(P(p)|Go"Vb|B(p)) = ,\m [P (p* + p*) — (M3 —mB)aH] (2.3)
; 2
V(D) FbIBIP) = o e ) .4
W (.2) G B0IBP) = Moo+ (M- M) A ) [e*” 23 qﬂ}
* 2__n2
q"(V(p',€)|Gouvb|B(p)) = 4T1(0P)euprae™ PP, (2.6)
q"(V(p',€)|00uy FsbIB(p)) = 2T2(P) [&;(Mg—MG) — (" a) (p+ )]
2
+2iT3(q?) (" - q) [qu - Méiw(w p’)u] ; (2.7)
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wheree is the polarisation of the vector meson ang p— p'.

The form factors are functions @f. We would like to compute them for the whole range
of ¢ directly using LQCD; however it is not possible to do so on current lattice ensembles. Our
calculations are most reliable in the low recoil lin#t ~ g2,,,, where both thé8 meson and the
final state meson are roughly at rest. The march to high recoil (sRgls blocked by three
barriers: discretisation errors as spatial momenta in the lattice frame become comparable to the
inverse lattice spacing, errors in heavy quark effective theory as the QCD dynamics of the decay
become comparable to, rather thamgcp, and growing statistical errors.

Our strategy for calculating thg?-dependence of the form factors is the following: (1) Com-
pute with large values af? where the form factors above are the dominant hadronic contributions
to B — K(*)¢¢ decays. Thé = u decays are clean channels at the LHC, and Standard Model cal-
culations of the differential cross section wigh> mé. will be tested directly against experimental
measurements. (2) Use a combination of methods, including moving NRQCD, to push LQCD
calculations to smaller values gf, determining the shape of the form factors over a range large
enough to test various phenomenological ansétze for the shapes. (3) Use these fits to extrapolate to
the lowq? region, down tay® = 0.

We have discussed above the contributions f@mQy, andQ;p. Compared to these, con-
tributions fromQ; and Q3_g are loop-suppressed. The contribution fr@w is also suppressed
by an approximate factdiAqcp/me)(Cs/C7) ~ 0.05. There are, however, complications which
have to be understood due@. The contribution fronQQ, dominates when thec pair is resonant
(Fig. 3, left). This is non-local and we can not calculate it on the lattice. Therefore, we will not be
able to extract the differential branching fraction in rangeg?aivhich are close to a charmonium
resonance. Nevertheless, the form factors we do calculate will be unaffected by these resonances
and extrapolations ig? will be smooth.

Weak annihilation contributions, where the valence quarks oBthieson annihilate into\&/
which decays into a quark and a or s quark (Fig.3, right), are long-distance contributions to
radiative and semileptoni8 — K*) decays, since the photon Aris emitted separately from the
flavour-changing interaction. This process is highly suppresseld fers decay sincé/,pV;s <
VipVis, IN contrast td — d decay where there is no CKM suppression.

Another complication facing LQCD calculations with vector mesons in the final state is their
instability to strong decays. With the presently used value for the light quark mags aeK *
are stable, but eventually we need to extrapolate to the physical light quark mass. The effects at the
decay threshold can be perhaps be studied in separate work by looking at the vector meson decay
constant as the quark mass is reduced. We can also try to check the validity of the extrapolation by
comparingVyp| obtained fronB — p /v with that fromB — n/v.

3. Moving NRQCD and matching of heavy-light operators

To reduce discretisation errors for the light meson in the final state at high recoil, we work in
a reference frame where tlBemeson is not at rest, so that for a given valugdthe momentum
of the light meson is reduced. Moving nonrelativistic QCD (MNRQCD) allows us to treat the
momentum of the heavy quark arising from the frame choice exactly.
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Figure 4: Matching coefficients for the vector cur- Figure 5: Matching coefficients for the tensor cur-
rent. rent. The renormalisation scaletis= my,.

The full ﬁ(AéCD/mﬁ) MNRQCD action used in our calculation was derived in Réf. [
Schematically, the 4-momentum of thejuark is parametrised as= myu -+ k, whereu = y(1,V)
andy = 1/v/1—Vv2. Then a non-relativistic expansion in the 3-momentuis performed.

At tree-level, the QCD heavy quark fiell(x) is related to the mMNRQCD two-component
quark- and antiquark fieldg, (x), &,(x) by the transformation

1

W00 = S Tewre ™ Ao, w00 with %w:<gx>, (3.)

wheree MX? removes the additive heavy quark mass tefgy 1 is the Foldy-Wouthuysen-Tani
transformationS(A) is the spinorial representation of the boost &ag removes time derivatives
in the Hamiltonian.

Eqg. 3.1) can be used as a starting point for the construction of the lattice operators correspond-
ing to the heavy-light currents in the operat@s Qg andQ1o. For a current of the fornd = ql'b
with some Dirac matriX~, one obtains, using the equations of motion to eliminate time derivatives,

1 +, 1
= ﬂqF S(A) ¥ +2mo\/}7
where'f(,(ﬂ has vanishing lower components. On the lattice, the continuum covariant derivative
D has to be replaced by a discrete versibnFor the light/strange quarn we use an improved
staggered action; presently ASQTAD. This means that the djdélds to be expressed in terms of
the staggered fielgl.

Eqg. 3.2) does not yet include any radiative corrections. Since the second tergn2nig
suppressed byocp/my relative to the first term, we currently restrict our calculation of radiative
corrections to the first term. To obtain these, we note that the spinorial boost is given explicitly by

J

gr (—if+i5+iv/y)-B A K +o/md) (3.2

1 A 2 A
A)=S (A)= ——|(1+7)1—7yV: . 3.3
S(A) = 81(4) = s (14111777 (33)
As can be seen3(3) contains a sum of two different Dirac structures; these will mix under renor-
malisation. Thus, at ordef’(os), we also need to consider the combination with the opposite
sign:

o . ..
&(A):m [(l+y)l+yv-yy°].
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The lattice current through ordér(os) then reads
30— (14 ggc )30 +asc IO (3.4)

with
o_ 1 _ (+) o_ 1 _ (+)
= —gqrssME”, 39=_—qrs .
+ ﬂq Si(A) K ﬂq (A) W

The matching coefficients. in (3.4) are obtained by requiring that the matrix elements in the
lattice theory and in the continuuriG scheme) are equal to ordey.

Results for the matching coefficients for the vecios ¥#) and tensorl{ = oY) currents are
shown in Figs4 and5. These were obtained using automated tadpole-improved one-loop lattice
perturbation theory §]. Here, the bard quark mass was set #m, = 2.8 and the boost-velocity
is pointing in 1-direction. In the figures, the different Lorentz indiced oére indicated as O
(temporal),|| (parallel tov) and_L (perpendicular t@).

The tree-levelV(Aqgcp/my) correction is

Lo 11 (—i7V+i7+iv/y)-A
My /¥ 2
Because of the mixing-down that occurs, one should work with subtragtedctrrents in the
calculation of the form factors. We have already computed the non-perturbative matrix elements of
(3.95), so that we can include them in the form factor results once we have obtained the necessary
mixing coefficients from perturbation theory.

S.(A) T (3.5)

4. Two-point and three-point functions with stochastic sources

In order to extract the form factors, we need to compute two-point functions for the light meson
and theB meson, as well as three-point functions with the currddt¢see sectios) inserted. The
basic method for the extraction of the matrix elements from fits to correlators was outlirigd in [

Here, we investigate the use of stochastic (random wall) sources, which allow us to obtain
approximations to the all-to-all correlators and therefore possibly to reduce statistical errors. For
theB — m/v semileptonic decay in standard NRQCD (i.e with Bieneson at rest), random wall
sources have been tested in R&f. We now include vector meson final states and moving NRQCD
in our study, and also work at smaller light-quark masses.

For the light valance quarks, we use one-spinor-component staggered fermions. We work with
four-spinor-component naive quarkd [n constructing the interpolating fields for heavy-light and
light-light mesons. The naive quark propaga@y(y,x) is related to the one-spinor-component
staggered quark propagatdy, (y,x) by

Gq(¥:X) = Gy (v, )2 (y) 27 (), (4.1)

whereQ(x) = [13_q(fu)*.

The numerical calculations described in the following sections were performed using 400
“coarse” MILC gauge configurations 9] that haveV = 20° x 64 anda! ~ 1.6 GeV. These
configurations include 2 1 flavours of ASQTAD sea quarks with massag, = amy = 0.007
andam; = 0.05. The ASQTAD action was also used for the light valence quarks, with masses
am, = amy = 0.007 andam; = 0.04. The heavy quark mass and stability parameter were set to
am, = 2.8 andn= 2.
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4.1 Light meson two-point functions

For flavour non-singlet light pseudoscalar mesons with 3-momeiturihe exact all-to-all
two-point function (with naive quarks) is given by

1 .
Css(t =Yo—Xo, F) = Fz<cp5(y)c1>;f(x)>e ip-(y-%)
V7X
1 . o o
= 55 Y Tr3Ga(y. 0 fs76Gy (v 0 Fsle P 0~
y7x

4 o
= p%Tf[qu(y,X)G}q, (yx)e P X, (4.2)

Note that due to the taste doubling, the amplitude obtained from this correlator is too large by a
factor of 16 (in the continuum limit), which needs to be divided out.

Compared to a single-point-source correlator, where one does not sui) weawould expect
a reduction in the statistical errors by a factor proportiona/tm2L3. However, it is forbiddingly
expensive to computé (2) directly. Instead, one can approximade?) using random wall sources,
as explained in the following.

We define ngq v, %0, ) Z Gy (1) EP(X %) P %

where&P(X) is a vector in colour space (colour index not shown explicitly), with every colour
component at every spatial site an independeant Z, random number (note that ifi][a different

type of noise was used). The indexdabels different random samples on a given configuration;
additionally it is understood that new random numbers are used on every gauge configuration. The
noise fields satisfy

Z & (X) ~ 8cddx z (4.3)

wherenz is the number of random samples (this relation becomes exact in thenlimit ).
Therefore, an approximation to the all-to-all pseudoscalar two point function can be obtained as
follows:

o A1 E Ccar 5y . GP )i
CSS,RW(Lﬁ) - FFZ F)Z]_;G q (y>X0a0) 'GXq(y7X07 p/)e (44)

%

4 il
[E] z G*q/ (Y, Z)abeq (Vs X)ac 5bc5>‘<’zelﬁl‘)_(‘e_Irj = Css(t, ).
y,ZX

In practice, a small numbat; is sufficient; evemz = 1 works to improve the signal for pseu-
doscalars compared to point sources. However, note that for each non-zero value of the momentum
@', new inversions are required.

For a flavour non-singlet vector meson with interpolating fiéid= ¢/ ¥;q, the exact all-to-all
two point function is given by

Ciit,F) = 3 Z ®i(y o 107-%)
= F yZXTr[f/j Gq (Y, %) ¥j ;75(;;/ (y, X)) 1P 0%

- éZTf[qu(V,X)GT (X)) (~1) s e PO, (4.5)
y.X
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Figure 6: Comparison of relative errors & meson two point functions from random wall sources (RW)
and a point source. "RWcd" means random wall sources with colour dilution. See the main text for the
numbers of inversions used for the different source types.

where the phase factor ¢f-1)%Yi comes from the relatiof2 " (x) 572 (x) = (—1)% ¥7;.
To obtain the random wall correlator in this case, a factqr-af)*i is added to the stochastic
source for the zero-momentum quark propagator; we define

Gh, (0, ) = ; Gy, (¥:X) EP(X) (—1)9. (4.6)

This means that additional inversions are required for the different polarisgtiers 2,3. The
random wall correlator is then

nz _ _ N )
Cijrw(t, F) = é nlz Z%G‘} (%%, 1)" - Gy (¥ %0, ) (-~ 1)1 e 1P, (4.7)
p=
A modification of the simple random wall sources is colour dilution, where a Kronecker delta in
colour space is introduced in the stochastic source,§2) is changed ta5, 5,&P(2) for each
source coloury. Here,£P(Z) does not have a colour index. Then for each coluone needs to
perform a separate inversion and in E¢s4( 4.7) a sum over source colour has to be added.
Fig. 6 shows the comparison of the relative error&afheson two-point functions from random
wall sources and a point source at zero momentum aag-at2z(1,0,0)/L. "RWcd" refers to the
random wall source with colour dilution and "RW" the simple random wall source. The statistical
errors are significantly reduced by using random wall sources. However the improvement decreases
as the momentum of the meson increases. We put four sources on each configuration for each
type of sources. Therefore the number of inversions for the RWcd and point source is the same
(1600x 3) while three times fewer inversions are used for the standard RW source. We use the
Bayesian fitting method described in Ref(] to fit the kaon two-point functions with a function
of the form

Cos(t, ) = ZO(AES)Z |:e—Ent+e—En(Lt—t>i| E 20@25)2 |:e—Ent+e—gn(Lt—t) . (4.8)

n= n=

where oscillating terms are included for the parity partners. To ensure the correct ordering of the
states, we actually use the logarithms of the energy differencs, nE,_1), In(En — En,l) as
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Figure 7: Left: A constrained five exponential fit to thé€ meson correlator from the random wall source
with colour dilution (fit range:t = 2...62). Right: Fit values for the ground state amplitude against the
number of exponentiald in the fits, for the RWcd and point sources.

the fit parameters Also, the amplitudes of the excited states@) are written as\, = B, Ag,
An BnAo and the relative amplitudes,, B, are used as the fit parameters. The numbers of
exponentials\ andN are increased until the results are stable. For the kaon at zero momentum,
one can sel = 0.

An example fit to the&K meson two-point function at zero momentum with the RWcd source
is shown in Fig.7 (left-hand side). On the right-hand side of Fi§.we compare the results
for the ground state amplitude from the RWcd and point sources. We observe a factor of 4.2
improvement in the ground state amplitude and 1.4 in the energy. For the kaon with momentum
ap=2n(1,0,0)/L, these improvement factors are 3.6 and 2.6, respectively. There is a small (about
1 percent or 1.8) deviation in the amplitudes between the RWcd and point source correlators. Note
that we inadvertently used different temporal boundary conditions for the two types of sources, but
we would expect this to have an effect much smaller than 1 percent.

For the vector meson correlator with zero momentum, we average all three polarisations. With
nonzero momentum in thedirection, only the two transverse polarisations are averaged. I8 Fig.
we compare the relative errors Kf two-point functions from random wall sources and a point
source at zero momentum andsgt= 27(1,0,0) /L. The number of inversions for the RWcd, RW
and point sources are 168 x 4, 1600x 4 and 1600« 3, respectively, for zero momentum. For
a nonzero momentum, the numbers are 1630« 3, 1600x 3 and 1600« 3, respectively.

As can be seen in Fi@, for the vector meson two-point functions a reduction in the statistical
errors is only seen at small An example fit for theK* at rest with the RWcd source is shown in
Fig. 9 (left-hand side). On the right-hand side of Figwe compare the results for the ground state
amplitude from the RWcd and point sources. Unfortunately, no improvement is observed, even
though the computational cost for the RWcd source was higher.

4.2 Heavy-light two-point functions

For B/Bs mesons, the exact all-to-all correlator with moving NRQCD and staggered actions is
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Figure 8: Comparison of relative errors ¢€* meson two point functions from random wall and point
sources. See the main text for the numbers of inversions used for the different source types.
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Figure 9: Left: A constrained five exponential fit to th€ meson correlator from the random wall source
with colour dilution (fit range:t = 1...63). Right: Fit values for the ground state amplitude against the
number of exponentiald = N in the fits, for the RWcd and point sources.

(fort =yo—x%p > 0)

Colt.R) = 5 3T G}q,w,x)sz*(y)sm)(G‘”véy’x) g) swew e 00 (49)

yX

Note that due to the use of MNRQCD for thejuark, the physical momentupis related to the
lattice momentunk by
P =K+2Zpymy, (4.10)

whereZ, ~ 1 is the renormalisation of the external momentum. Similarly, the physical energy
po = Eg of theB meson is related to the eneray(R) obtained from the fit by

Es(P) = Ev(K) +Cy (4.11)

whereC, is the velocity-dependent energy shift. B@handZ, have been calculated both non-
perturbatively and perturbatively in Refl][

10
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Figure 10: Comparison of relative errors & meson two point functions from the RWcd, RW and point
sources, at = 0 (left) andv = 0.4 (right).

In order to obtain the random wall correlator, we define

~ o Gy, (V,X) 0\ = .
S0k =3 ( W) 0) SiA) €4 Q0 £°(H). @12)
X
We then combine this with the zero-momentum random wall light quark propagator from the same
&P to obtain theB meson random-wall correlator:
Carw(t,K) = 11lssar (y, X0, 0)* - tr [QT( )S(A)GP (y, %0,K) | & &Y (4.13)
B,RW\L, K) = ’}/L3 ny pzlg Xo Y, Xo, y H (Ys X0, : :

In (4.13), “tr” denotes a trace over spinor indices only.

We also compute correlators with gauge-invariant Gaussian smearing for the heavy quark at
the source and/or sink. The smearing is performed via the operator

c Ns
<1+ nSA<2>> , (4.14)

whereA® is a covariant lattice Laplacian an ns are the smearing parameters. The operator
(4.19) is inserted in Eq.4.12) to the left of Q(x) £P(X) (for source smearing) and/or to the left of
Gy, (¥, X) (for sink smearing).

In Fig. 10we compare the relative errors®meson two-point functions (without smearing) at
v =0 andv = 0.4 from the three sources. Similar to vector mesons, an advantage of using random
wall sources is only seen at time slices less than 10.

For the heavy-light two-point functions, we use matrix fits with local and smeared sources.
The fit function has the form

N—1 N—1

C3°(t,k) = ;AﬁAﬁ*e*EM(—l)t“ ;Kﬁﬂﬁ*eén& (4.15)

where the indexs (S) labels the type of smearing at the source (sink). As described iniSlewve
actually use the logarithms of the energy splittings and the relative excited state amplitudes as the
fit parameters.
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Figure 11: Left: A constrained 6+6 exponential matrix fit for tlemeson atv = 0.4 (RWcd source; fit
ranget = 2...32). Right: Fit results for the loc& meson amplitude at= 0.4 vs the number of exponentials
N = N in the Bayesian fit, for the RWcd and point sources.

Fig. 11shows an example of 21 matrix fit of B meson correlators at= 0.4 withN =N = 6.
In this fit, comparing the RWcd source with the point source, we see an improvement factor of about
1.4 for the ground state energy and local amplitude. Generally the improvement factors we found
for B mesons are small (no improvement in some cases).

4.3 Three-point functions

Forxg > Yo > 29, and writingt = xg— VYo, T = Xo — Zp, the exact all-to-all three-point correlator

11 o 10 % i(k-F) gk

Crat, T,k p) = ==

Gl (v,x) F(9) QT(y) 5

< 7 < Gw\,é)ﬂ 2) g) SA) %52 (2) qu/ (z x)] , (4.16)

whereF (x) = 1 for a pseudoscalar meson in the final st&tgs) = (—1)% 9/ for a vector meson

in the final state, and? denotes the gamma matrix / derivative operator content of the heavy-light
current. We now define the sequential-source heavy-quark random wall propagator, based on the
light spectator quark random wall propaga@, (z,x0, —p/):

- L Gu(V.2) 0\ . i - ,
Gﬁ(y,zo,xo,k,pf>=z< e )O> S RE QY (20, -F).  (417)
Z

The random-wall three-point correlator for a pseudoscalar meson in the final state is then

L1110 " - o
CSJB.,RW(t? T7 kv p/) = 13n. Z Z GEq(y,X0,0) -tr |:QT(y>’}45/GE| (y,Z(),X(),k, p/)]
vz &4

w e 1(k=P)Y, (4.18)
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Figure 12: Fits to B — K three-point functions at Figure 13: Fits toB — K* three-point functions at
zero recoil (temporal vector current) from RWcd zero recoil (currentsogjysb) from RWcd and point
and point sources (data points coincide). sources.

and for a vector meson in the final state we have

L 111 M _ - . - L
. _ - - - p S\ . AJ A 1- A p
CJJB, RW(t7 T’ k7 p,) y L3 ny pzlg GXq (y,XO, J) tr |:y ’)/5'(2 (y) 5 / GH (y>ZO>X07 k7 p,)
x g (k=P (4.19)

For smeared three-point functions, we insert the operétar)(in the equation for the sequential-
source heavy-quark propagatdr17), to the left ofQ(z) G,'?q, (z,%0,— 5’).
For the three-point correlators, the fit function has the form

N NF—1Ng—1
Cra(P, k1, T) = % > AP Fite BT | oscillating terms
n=0 m=0

(4.20)
and again we actually use the logarithms of the energy splittings and the relative excited state
amplitudes as the fit parameters.

Fig. 12 shows fits tdB — K three-point functions g’ = k = 0, v = 0, for the RWcd and point
sources. These fits haig = Ng = Nk = 5 andNk = 0. Correlators withT = 11 andT = 12 are
fitted simultaneously and the range fas from 0 toT. Comparing the RWcd source to the point
source, we find an improvement factor of about 1.6 for the amplifge

Fits of B — K* three-point functions ap’ = k=0, v=0, are shown in Figl3. Here, the
numbers of exponentials alg = Ng = Nx- = Nk- = 6 and the fit range i§ = 13,14;t = 2...(T —

1). A factor of about 1.3 improvement is observed for the amplitAggfor the RWcd source
compared to the point source (but recall that more inversions were used for the RWcd source).

5. Simultaneous fits and preliminary form factor results

The most accurate results for the form factors can be obtained by fitting the two-point and
three-point functions described in sectiohg, 4.2 and4.3 simultaneously. In the simultaneous
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Figure 14: Preliminary results for the form fac- Figure 15: Preliminary results for the form fac-
tors fp, f. for B— K decays, obtained from simul- tor fy for B — K decays, obtained from simulta-
taneous non-Bayesian fits with a wide rangeTof neous non-Bayesian fits with a wide range Tof

in the 3-point function. The left-most points have in the 3-point function. The left-most points have

V=(0.4,0,0),k=0and@ = 21/L-(—1,0,0). V=(0.4,0,0), k=0and@ = 21/L-(—1,0,0).
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Figure 16: Preliminary results for the form factoiig, T, for B — K* decays, obtained from simultaneous
Bayesian fits with three values far. The left-most points havé= 0,k = 0 andp = 2z /L - (—1,0,0).

fits, the three-point function(20) shares the energy parametggsF, with the light-meson two-
point function, and the energy parametBks En, with the B-meson two-point function. We fully
take into account correlations between all data points.

When multiple values fofl in the three-point functions are included, we find that the results
for theB meson energy and two-point amplitude are significantly more accurate compared to fits of
the B meson two-point functions alone. This effect is particularly pronounced for the more precise
B — K three-point functions.

We have computed the three-point functions for all valuek fsbm 0 to 26 (atv = 0) and 0 to
20 (atv = 0.4), so that we can investigate which range Togives the best fits. This investigation
is still ongoing. Bayesian fits with the full range= 0...T in the three-point functions turned out to
be much more difficult once more than 3 or 4 valued aire included (it seems to be impossible
to achievey?/dof~ 1 in this case).

Therefore, we have also performed non-Bayesian fits with oAlyllexponentials for each
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meson, including all available values ©fand skipping enough points near the sources so that
the contamination from excited states is seen to be negligible. This only works$oK, where
the signal is still good at large times, and even there only at low recoil. Preliminary results for
fo, f. and fr obtained with this method are shown in Figsl and 15 respectively. The error
estimates are from bootstrap. At zero recoil, wefgét?,,,) = 0.86917) from the point source and
fo(Q%.a) = 0.889(12) from the RWcd source, an improvement by a factor of about 1.4. However,
atV = (0.4,0,0), k=0 andp = 2/L-(—1,0,0) the point source actually gives more accurate
results.

For B — K*, we used Bayesian fits with three values fore.g. T = 13 14,15 andt =
2...(T —2) for Ty. The preliminary results for the form factofs andT, are shown in Figl6. We
have computed the correlation functions Bar— ¢ as well, but these still need to be fitted.

All form factor results presented here include the 1-loop radiative corrections in the heavy-
light operators as discussed in S&ca value ofas = 0.3 was used here. The/th corrections will
be included once we have the perturbative results for the mixing coefficients.

6. Discussion

The stochastic source method we tested reduces statistical errors much more effectively in
light pseudoscalar mesons than in vector mesons or heavy-light mesons. Its effectiveness is further
reduced for non-zero momentum, and hence for qu\?erFor each momentum, and in the case
of vector mesons also each polarisation, additional inversions are needed for the stochastic source
method. Our preliminary results with the random wall sources are generally not as as good as in
[7], which may be due to the lower light-quark mass used here. In calculations with many meson
momenta, simply increasing the number of point sources may be favoured over using stochastic
sources if the total computer time is fixed.
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