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We investigate an alternative to the Sequential PropagatorMethod used in Lattice QCD calcula-

tions of semileptonic form factors. We replace the sequential propagator with a stochastic prop-

agator so that, in principle, all momentum and sink smearingcombinations are available with

only a single spin-color inversion. Practically, the stochastic noise is significant and must be re-

duced at the cost of more inversions. We study the behavior ofthe stochastic noise and compare

the computational costs of this stochastic technique and the Sequential Propagator Method. We

also present preliminary semileptonic form factor resultsusing the stochastic technique onNf = 2

configurations with a non-perturbatively improved Sheikoleslami-Wohlert action generated by the

QCDSF collaboration. At a fixed cost, measured in terms of thenumber of heavy-quark inver-

sions, the method provides more correlators for the extraction of the form factors at variousq2’s

than the Sequential Propagator Method. These additional correlators reduce the total statistical

errors of certain kinematic points, although the stochastic error is still comparable to the gauge

error at other points.
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1. Introduction

Experimental measurements of heavy-light semileptonic decays, combined with theoretical
input, can be used to extract the Cabbibo-Kobayashi-Maskawa (CKM) matrix elements|Vub|, |Vcb|,
|Vcd|, and |Vcs|. The determination of these matrix elements provides constraints on the CKM
Unitarity Triangle and thus test the Standard Model. Conversely, |Vcd| and |Vcs| are known with
high precision, and can be used to test the Lattice techniques used to calculate the decay rates
of D mesons. The approach to current Lattice calculations of thesemileptonic decay rates ofD
mesons involves constructing the appropriate three-pointfunction using the so-called sequential
(or extended) propagator. We investigate an alternative method using stochastic techniques, which
we refer to as the Stochastic Sink Method (SSM), in the hope ofachieving an overall savings in
computational effort. With this method all momentum and sink smearings are in principle available
using only a single spin-color inversion. In this report we present a basic comparison at fixed cost
of the two methods, and provide preliminary results of the form factors using the SSM.

In the following we focus on the decays of a heavy-light pseudoscalar charm-like meson (H =

D) to a light-light pseudoscalar meson (P = π/K) and leptons (l ,νl ). For these processes the
differential decay rate can be parametrized as

dΓ
dq2 (H → Plνl ) = |Vcd/s|2

︸ ︷︷ ︸

CKM

G2
F

192π2m3
H

λ3/2(q2)

︸ ︷︷ ︸

Perturbativelyknown

|F+(q2)|2
︸ ︷︷ ︸

f orm f actor

, (1.1)

whereq2 = (pH − pP)2 is the squared difference between the initial and final statefour-momentum.
The greatest source of uncertainty in the theoretical calculation is due to the non-perturbative in-
teractions parametrized by the form factorF+(q2).

These interactions appear in the hadronic matrix element〈P(pP)|Vµ(q2)|H(pH)〉. Vµ = ψ̄cγµψl

is a weak flavour-changing vector current, whereψc is the charm quark andψl is thed or s quark.
The matrix element can be parametrized as a linear combination of the form factorsF+ andF0,

〈P(pP)|Vµ(q
2)|H(pH)〉 =

{
pH + pP−q(m2

H −m2
P)/q2}

µF+(q2)+
{

q(m2
H −m2

P)/q2}

µF0(q
2).

(1.2)
On the lattice the matrix elements are extracted from three-point correlators with the following
form,

C3(T, t;~pH ,q) = ∑
~x,~y

e−i~pH ·~xe~q·~y〈0|ψ̄uγ5ψc(~x,T) · ψ̄cγµψl (~y, t) · ψ̄l γ5ψu(~0,0)|0〉 =

−∑
~x,~y

e−i~pH ·~xe~q·~yTr
〈

M−1
u (~0,0;~x,T))γ5M−1

c (~x,T;~y, t)γµM−1
l (~y, t;~0,0)γ5

〉

(1.3)

whereψu is the spectator light-quark andM−1
x is the propagator for quarkx. In the limit of large

time separation Eq. (1.3) has the form

lim
T≫t≫0

C3(T, t;~pH ,q) → ZP

2EP

ZH

2EH
×〈P(pP)|Vµ|H(pH)〉×e−EPte−EH(T−t), (1.4)

so that a determination of the amplitudes and energies from ratios or simultaneous fits with meson
propagators can isolate the matrix element.
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2. Stochastic Sink Method (SSM)

The standard method for calculationingD meson semileptonic three-point functions uses se-
quential propagators. The sequential propagator providesa way to calculate a heavy-quark propa-
gator that connects all spatial sites~x at the sink time-sliceT, to all sites~y andt at the vector current.
It starts by taking a single time-slice of the spectator quark propagator,M−1

u (~x,T;~0,0). The desired
sink momentumpH , sink smearingWs, and sink gammaΓ f are then inserted to get the “sequential
source". The heavy-quark action is then inverted on this “sequential source" to get the sequential
propagator,

∑
~x

M−1
c (~y, t;~x,T)ei~pH ·~xΓ fWsM

−1
u (~x,T;~0,0). (2.1)

The sequential propagator can then be combined with the daughter light-quark propagator,Ml(~y, t;~0,0),
and appropriate gamma matrices to get Eq. (1.3). This methodrequires a heavy-quark inversion
for each distinct sink momentumpH , sink smearingWS, and sink gammaΓ f . The computational
effort required for this procedure can become prohibitive if many sink momenta and/or smearings
are needed, as would be required in the use of the VariationalMethod [4, 5] for studying excited
state decays.

An alternative method which may be more efficient is to replace the sequential propagator
with an all-to-all propagator [2]. We construct all-to-allpropagators by generating random vectors
η[r ]

j (~x,T), r = 1, . . . ,N, at a particular timesliceT using complexZ2 noise, with the property

1
N ∑

r
η[r ]

i (x)η†[r ]
j (z) = δxzδi j +O(1/

√
N) (2.2)

wherei, j label spin and color. We then invert the charm-like quark’s Dirac operator,Mi j (x,y), on

each sourceη[r ]
j (~x,T) to obtain the solutionsψ[r ]

j (~y, t):

Mk j(~z,T;~y, t)ψ[r ]
j (~y, t) = η[r ]

k (~z,T) → ψ[r ]
j (~y, t) = ∑

~z,k

M−1
jk (~y, t;~z,T)η[r ]

k (~z,T). (2.3)

The average over the product of the sources and solutions provides an estimate for the all-to-all
heavy-quark propagator,

1
N ∑

r
ψ[r ]

j (~y, t)η†[r ]
i (~x,T) = M−1

ji (~y, t;~x,T)
︸ ︷︷ ︸

all−to−all

+∑
~z,k

M−1
jk (~y, t;~z,T)(

1
N ∑

r
η[r ]

k (~z,T)η†[r ]
i (~x,T)−δ~z~xδki)

︸ ︷︷ ︸

error∝O(1/
√

N)

,

(2.4)
where the stochastic error decreases withN, the number of source/solution pairs used.

A stochastic estimate of Eq. (1.3) can be constructed by combining the spectator and daugh-
ter point-to-all light quark propagators and the all-to-all heavy-quark sources and solutions in the
following manner,

− 1
N ∑r Tr

〈

∑~xe−i~pH ·~xΓiM−1
u (~0,0;~x,T)Γ f η[r ](~x,T) ·∑~ye~q·~yψ†(~y, t)ΓMl (~y, t;~0,0)

〉

=

C3(T, t;~pH ,q)+O(1/
√

N), (2.5)

where the appropriate propagator smearings must be appliedandΓ f = Γi = γ5 andΓ = γµ.
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Param 163×32 243×48

nc f gs 100 221
a 0.089 fm 0.076 fm

mπ,sea 929 MeV 272 MeV
mπ,valence 929 MeV 438 MeV

mD 2.44 GeV 1.93 GeV

Table 1: Parameter details for the 2 ensembles used in the cost comparison.

If the stochastic error term were negligible compared to thegauge noise we would have all
sink smearings and momentum available with a single heavy-quark inversion. For the parameters
in our calculation the error term is not neglible and must be reduced by additional noise vectors
and/or noise reduction methods. Both improvements involvea computational overhead which must
be accounted for in any comparison between the SSM and Sequential Propagator Method. We tried
all combinations of spatial even/odd, color, and spin partitioning [2], and found spin partitioning on
its own to be the most computationally efficient method of noise reduction. The number of vectors
used will be discussed in the next section.

3. Sequential Propagator Method versus SSM and Preliminary Results

We perform a simple comparison of the two methods making basic assumptions about the data
set desired for our form factor calculation. We compare the total statistical errors of correlators
constructed from the two methods at fixed cost, where the costis measured in the number of
heavy-quark action inversions. All available rotationally equivalent correlators corresponding to
each individualq2 point are averaged over to improve the statistics. The sink is placed at the
midpoint of the lattice, allowing us to fold the data along the time axis.

Two QCDSF ensembles with 2 dynamical sea-quarks [1] were used in the comparison with
the parameters shown in Tab. 1. The ensembles were generatedusing a Wilson Plaquette action for
the gluons and a non-perturbatively improved Sheikoleslami-Wohlert action for the fermions. Both
actions have errors starting atO(a2). The interpolating fields in the correlators were Wuppertal
smeared [3], using the smearing factor and number of iterations that optimize overlap with the
light-light meson ground state. It should be noted that the number of smearing iterations increases
the stochastic noise significantly faster than it increasesthe gauge noise, and thus using a more
customized smearing (with less iterations) for the heavy-light stateH would reduce the stochastic
noise presented in this report.

We assume four sink momenta are desired:pH = (0,0,0),(1,0,0),(1,1,0),(1,1,1). These
sink momenta create data in the physical region,q2 > 0, for the meson masses used in our calcula-
tion. We also assume a minimal smearing basis of two different sink smearings,Ws. The cost re-
quired to build this data set using the Sequential Method is thus 12(spin/color)×4(pH )×2(Ws) =

96. The cost for the SSM with spin partitioning is 4(spin)×N, so usingN = 24 is of comparable
cost to the Sequential Method. Note that allpH are generated at negligible cost with the SSM.

Figs. 1(a)-1(d) are representative of the range of behaviour of the percentage statistical errors
in our data set usingN = 24. Figs. 1(a) and 1(b) show theq2 = q2

maxkinematic point for the 163×32
and 243 × 48 lattices respectively. At this kinematic point the initial and final state mesons have
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zero spatial momentum. The total noise for the correlator onthe 163×32 lattice shown in Fig. 1(a)
is dominated by the gauge noise-in fact this is true for all other kinematic points on this lattice. The
stochastic noise for the 243×48 lattice shown in Fig. 1(b) is dominated by the gauge noise near the
heavy-light meson (t = 24), but becomes comparable to the gauge noise at the light-light meson
(t = 0).

The SSM correlator shown in Fig. 1(c) is constructed from an average of all available rota-
tionally equivalent correlators, 6 in total, whereas the Sequential Method generated correlator has
only a single correlator available. The averaging causes the SSM correlator to actually have smaller
errors than the Sequential Method generated correlator. This suggests that there is statistical gain to
be had in so many additional sink momenta. Fig. 1(d) shows thenoisiest SSM generated correlator,
relative to the Sequential Method correlator, that we foundin our data set. In this case both the SSM
and Sequential Method correlators can be constructed from 6rotationally equivalent correlators.

We have examined all correlators with an appreciable signaland draw the conclusion that
with the modest number of 24 stochastic estimates the stochastic error is at worst comparable in
magnitude to the gauge noise, while at best the additional data available results in smaller total
errors for the SSM. We are expanding this analysis and expectto have more quantitative results in
the near future.

Bare lattice results using the SSM forF+(q2) andF0(q2) calculated from the 163×32 ensemble
are presented in Fig. 2. 600 configurations with 24 stochastic vectors were used with all rotationally
equivalent correlators averaged to improve statistics.

4. Additional Considerations and Outlook

The effects ofO(a) improvement have also been examined and do not change our conclusions.
The matching coefficientZV is known non-perturbatively for these lattices [6] and the coefficient
of the improvement termcV is known to one-loop perturbatively [7].

We’ve also investigated using the “one-end trick”[8, 9] with one stochastic vector, with and
without spin partitioning. In our examination, comparing the three methods with no momentum
averaging, we saw a noise reduction for certainq2’s in the one-end generated correlators. For all
q2’s however, after averaging over the available correlatorsfor the SSM and Sequential Method
(and no averaging for the one-end correlators), the one-endcorrelators’ errors were larger. Because
generating the additional rotationally equivalent correlators or stochastic vectors for the one-end
method would make it clearly more expensive than the other methods, we’ve concluded the one-
end method is less efficient for the parameters we are workingwith.

The SSM is potentially computationally more efficient than using sequential propagators. With
the SSM all sink momentum and smearings can be generated witha fixed number of heavy-quark
inversions. Whether this method saves computational effort over the Sequential Method depends on
the statistical improvement that additional sink momenta and smearings provide for the extraction
of the form factors, and a more comprehensive investigationis underway. At this stage it can
be stated that at a fixed cost the errors at particularq2’s can be reduced by using the SSM. This
method should also significantly reduce the cost required touse the Variational Method in three-
point calculations, where multiple sink smearings are required for each sink momentum.
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Figure 1: Four correlators corresponding to differentq2 kinematic points are shown. The upper plot of
each figure shows the sequential (red) and stochastic (blue)correlators scaled by the appropriate two-point
functions, such that the vector matrix element is proportional to the resulting plateau. The lower plot of each
figure shows the percentage statistical errors of the two methods. The correlators shown are chosen because
they are representative of the behaviour of the statisticalerrors in our data set. In Fig. 1(a) and Fig. 1(b) the
temporal component of the vector current atq2 = q2

max for the 163×32 and 243×48 ensemble are shown. In
Fig. 1(c) the temporal component with|pP| = 1 and|pH | = 1 is shown, where the stochastic correlator has
been constructed from the average of the six rotationally equivalent correlators. The Sequential Method has
only one correlator available in this data set. Fig. 1(d) presents the spatial component of the matrix element,
where|pP| = 1 and|pH | = 0. Both the sequential and stochastic correlators have beenaveraged over the six
available rotationally equivalent correlators.
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Figure 2: Preliminary results using the SSM on the 163×32 ensemble withN = 24 and 600 configurations.
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