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1. Introduction

Experimental measurements of heavy-light semileptonaage combined with theoretical
input, can be used to extract the Cabbibo-Kobayashi-MaaK&KM) matrix element$Vyp|, |Ven),
[Ved|, and [Ves|. The determination of these matrix elements provides caing$ on the CKM
Unitarity Triangle and thus test the Standard Model. Coselgr [Vq| and|Ves| are known with
high precision, and can be used to test the Lattice techsigged to calculate the decay rates
of D mesons. The approach to current Lattice calculations obémeileptonic decay rates &f
mesons involves constructing the appropriate three-gamttion using the so-called sequential
(or extended) propagator. We investigate an alternativih@deusing stochastic techniques, which
we refer to as the Stochastic Sink Method (SSM), in the hopechfeving an overall savings in
computational effort. With this method all momentum andksimearings are in principle available
using only a single spin-color inversion. In this report wegent a basic comparison at fixed cost
of the two methods, and provide preliminary results of thenféactors using the SSM.

In the following we focus on the decays of a heavy-light pssedlar charm-like mesoil(=
D) to a light-light pseudoscalar mesoR £ 11/K) and leptonsI(v,). For these processes the
differential decay rate can be parametrized as

dr G2
——(H = PIV) = Nogsl® ——2—5A¥2(?) |[F ()%, (1.2)
q2 CKM H form factor

Perturbatively known

whereg? = (py — pp)? is the squared difference between the initial and final $tatemomentum.
The greatest source of uncertainty in the theoretical &ation is due to the non-perturbative in-
teractions parametrized by the form fackor(q?).

These interactions appear in the hadronic matrix elertR(igp) Vu(g?)[H (pr))- Vi = Weyu
is a weak flavour-changing vector current, wheas the charm quark angj; is thed or s quark.
The matrix element can be parametrized as a linear combinefithe form factors, andr,

(P(Pp)Vu(@®)IH (Pr)) = { Pr + pp — a(miy —mB) /o } ,F-(6%) + {a(mfy —mB) /o’ }, Fo(a).
(1.2)
On the lattice the matrix elements are extracted from tpaet correlators with the following
form,

Ca(T,t; Bu,q) = %e“ﬁ“‘*eq‘7<0|u7UV5wc(Y,T) Py (V:1) - Pryswu(0,0)|0) =

),

-y e P Xy Ty <M51(6,O;Y,T))V5Mc_l(xTJV7t)VuM|_1(V7t?67 O)V5> (1.3)
Xy

whereyy, is the spectator light-quark ard, ! is the propagator for quark In the limit of large
time separation Eqg. (1.3) has the form

H . ZP ZH —Ept o.—En(T—t)
M Ca(T.6Pn, 0) — o op < (P(Pe)MilH (pr)) x & e ; (1.4)

so that a determination of the amplitudes and energies fadiwsror simultaneous fits with meson
propagators can isolate the matrix element.
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2. Stochastic Sink Method (SSM)

The standard method for calculationiBgmeson semileptonic three-point functions uses se-
guential propagators. The sequential propagator prowdesay to calculate a heavy-quark propa-
gator that connects all spatial sitéat the sink time-slicd, to all sitesy andt at the vector current.

It starts by taking a single time-slice of the spectator k]lpmopagatongl(Y,T;ﬁ, 0). The desired
sink momentunpy, sink smeariny\s, and sink gamma&; are then inserted to get the “sequential
source". The heavy-quark action is then inverted on thigueatial source" to get the sequential
propagator,

ZM (¥, t:%, T)eP*r ;WeM; 1(%, T;0,0). (2.1)

The sequential propagator can then be combined with thentiadgght-quark propagatoli, (y,t;ﬁ, 0),
and appropriate gamma matrices to get Eq. (1.3). This meathquires a heavy-quark inversion
for each distinct sink momentumy, sink smearing\Vs, and sink gamma ;. The computational
effort required for this procedure can become prohibiti@any sink momenta and/or smearings
are needed, as would be required in the use of the Variatide#hod [4, 5] for studying excited
state decays.

An alternative method which may be more efficient is to replte sequential propagator
with an all-to-all propagator [2]. We construct all-to-plopagators by generating random vectors
r][j'] (X,T),r=1,...,N, at a particular timeslic& using complexXZ, noise, with the property

=5 o001 (@) = 88 + 01/ VN) (2.2)

wherei, j label spin and color. We then invert the charm-like quarkisaD operatorM;; (x,y), on
each source [jr] (X,T) to obtain the solutionfp[jr] (¥,1):

MG T30 @0 =l @T) = o] G0 = Y M EZ TN @T).  (2.3)
Zk

The average over the product of the sources and solutionvidpsoan estimate for the all-to-all
heavy-quark propagator,

| [

Nzw 5.0 (%.T) = M9 EXT)+ 5 M 962 T)

all—to—all

(5 2 @Tn R T) —8x8),

erro1O(1/v/N)
(2.4)

where the stochastic error decreases Witlthe number of source/solution pairs used.

A stochastic estimate of Eq. (1.3) can be constructed by suntbthe spectator and daugh-
ter point-to-all light quark propagators and the all-tbfaavy-quark sources and solutions in the
following manner,

43 Tr (5o PHATMGE O, 0 TIF IR T) - 5yt (3,0 M 7,:0,0)) =
Ca(T,t; Pn, ) + O(1/VN), (2.5)

where the appropriate propagator smearings must be agpldid; =I'; = ys andl" =y,
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Param  18x32 24 x48
Ncfgs 100 221
a 0.089fm 0.076 fm
Mrsea 929 MeV 272 MeV
mTLvaIence 929 MeV 438 MeV
mp 2.44 GeV 193 GeV

Table 1: Parameter details for the 2 ensembles used in the cost cimmpar

If the stochastic error term were negligible compared togaege noise we would have all
sink smearings and momentum available with a single heaaykginversion. For the parameters
in our calculation the error term is not neglible and mustdéduced by additional noise vectors
and/or noise reduction methods. Both improvements invaleemputational overhead which must
be accounted for in any comparison between the SSM and StgjuRmopagator Method. We tried
all combinations of spatial even/odd, color, and spin paring [2], and found spin partitioning on
its own to be the most computationally efficient method osraieduction. The number of vectors
used will be discussed in the next section.

3. Sequential Propagator Method versus SSM and Preliminary Results

We perform a simple comparison of the two methods makinglzssumptions about the data
set desired for our form factor calculation. We compare thal tstatistical errors of correlators
constructed from the two methods at fixed cost, where the isosteasured in the number of
heavy-quark action inversions. All available rotatiopadiquivalent correlators corresponding to
each individualg® point are averaged over to improve the statistics. The sinlaced at the
midpoint of the lattice, allowing us to fold the data along thme axis.

Two QCDSF ensembles with 2 dynamical sea-quarks [1] werd imsthe comparison with
the parameters shown in Tab. 1. The ensembles were genasittgca Wilson Plaquette action for
the gluons and a non-perturbatively improved Sheikoleslaiohlert action for the fermions. Both
actions have errors starting @(a?). The interpolating fields in the correlators were Wuppertal
smeared [3], using the smearing factor and number of ieratthat optimize overlap with the
light-light meson ground state. It should be noted that tnalmer of smearing iterations increases
the stochastic noise significantly faster than it incredBesgauge noise, and thus using a more
customized smearing (with less iterations) for the he@fiytistateH would reduce the stochastic
noise presented in this report.

We assume four sink momenta are desiregd: = (0,0,0),(1,0,0),(1,1,0),(1,1,1). These
sink momenta create data in the physical regggn; 0, for the meson masses used in our calcula-
tion. We also assume a minimal smearing basis of two diffesgk smearingsWs. The cost re-
quired to build this data set using the Sequential Methadls LZspin/color) x 4(py ) x 2(Ws) =
96. The cost for the SSM with spin partitioning issfin) x N, so usingN = 24 is of comparable
cost to the Sequential Method. Note that@ll are generated at negligible cost with the SSM.

Figs. 1(a)-1(d) are representative of the range of behawbthe percentage statistical errors
in our data set usiny = 24. Figs. 1(a) and 1(b) show taé = g2, kinematic point for the 1x 32
and 24 x 48 lattices respectively. At this kinematic point the iaitand final state mesons have
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zero spatial momentum. The total noise for the correlatdherl& x 32 lattice shown in Fig. 1(a)
is dominated by the gauge noise-in fact this is true for &leokinematic points on this lattice. The
stochastic noise for the 24 48 lattice shown in Fig. 1(b) is dominated by the gauge noése the
heavy-light mesont(= 24), but becomes comparable to the gauge noise at the iligiitrheson
(t=0).

The SSM correlator shown in Fig. 1(c) is constructed from eerage of all available rota-
tionally equivalent correlators, 6 in total, whereas thgumtial Method generated correlator has
only a single correlator available. The averaging causeS8M correlator to actually have smaller
errors than the Sequential Method generated correlatis.sliggests that there is statistical gain to
be had in so many additional sink momenta. Fig. 1(d) showadisest SSM generated correlator,
relative to the Sequential Method correlator, that we foaralr data set. In this case both the SSM
and Sequential Method correlators can be constructed froosta@onally equivalent correlators.

We have examined all correlators with an appreciable signdl draw the conclusion that
with the modest number of 24 stochastic estimates the stticherror is at worst comparable in
magnitude to the gauge noise, while at best the additiorntal @aailable results in smaller total
errors for the SSM. We are expanding this analysis and expdwive more quantitative results in
the near future.

Bare lattice results using the SSM fer (g?) andFy(g?) calculated from the £6< 32 ensemble
are presented in Fig. 2. 600 configurations with 24 stoahaetitors were used with all rotationally
equivalent correlators averaged to improve statistics.

4. Additional Considerations and Outlook

The effects of0(a) improvement have also been examined and do not change atlusioms.
The matching coefficienty is known non-perturbatively for these lattices [6] and tbeficient
of the improvement termy, is known to one-loop perturbatively [7].

We've also investigated using the “one-end trick”[8, 9]hwidne stochastic vector, with and
without spin partitioning. In our examination, comparirige tthree methods with no momentum
averaging, we saw a noise reduction for certgiis in the one-end generated correlators. For all
o?’s however, after averaging over the available correlafordhe SSM and Sequential Method
(and no averaging for the one-end correlators), the onesendlators’ errors were larger. Because
generating the additional rotationally equivalent catis or stochastic vectors for the one-end
method would make it clearly more expensive than the otheéhoaks, we've concluded the one-
end method is less efficient for the parameters we are workitig

The SSM is potentially computationally more efficient thaing sequential propagators. With
the SSM all sink momentum and smearings can be generatecikbd number of heavy-quark
inversions. Whether this method saves computationalteff@r the Sequential Method depends on
the statistical improvement that additional sink momemiz smearings provide for the extraction
of the form factors, and a more comprehensive investigasomderway. At this stage it can
be stated that at a fixed cost the errors at partiogd@r can be reduced by using the SSM. This
method should also significantly reduce the cost requiragséthe Variational Method in three-
point calculations, where multiple sink smearings are iregifor each sink momentum.
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Figure 1: Four correlators corresponding to differegitkinematic points are shown.
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The upper plot of

each figure shows the sequential (red) and stochastic (btueglators scaled by the appropriate two-point
functions, such that the vector matrix element is propasgiado the resulting plateau. The lower plot of each
figure shows the percentage statistical errors of the twhodst The correlators shown are chosen because
they are representative of the behaviour of the statisticaks in our data set. In Fig. 1(a) and Fig. 1(b) the
temporal component of the vector currentiait= g3, for the 16 x 32 and 24 x 48 ensemble are shown. In
Fig. 1(c) the temporal component withp| = 1 and|p4| = 1 is shown, where the stochastic correlator has
been constructed from the average of the six rotationalljyvadent correlators. The Sequential Method has
only one correlator available in this data set. Fig. 1(dsprés the spatial component of the matrix element,
where|pp| = 1 and|pH| = 0. Both the sequential and stochastic correlators havedemaged over the six
available rotationally equivalent correlators.
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Figure2: Preliminary results using the SSM on the*1632 ensemble wittN = 24 and 600 configurations.
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