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We calculate the neutral pion (π0) to off-shell two photon (γ∗γ∗) transition form factor in lat-

tice QCD. The transition form factor can be extracted from the three-point function of the form

(axial-vector)-(vector)-(vector) as a function of off-shell two-photon momentum. Since the axial-

anomaly plays an important role in theπ0 → γγ decay process, we employ the overlap fermion,

which preserves the exact chiral symmetery on the lattice. After extrapolating to the chiral and the

vanishing photon momentum limit with a fit function based on vector meson dominance (VMD)

model, we find that the Adler-Bell-Jackiw anomaly is correctly reproduced.
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1. Introduction

In this report we present our lattice study of theπ0 → γ(∗)γ(∗) form factor. The photons could
be either on-shell or off-shell. The goal of this study is two-fold. The first is to reproduce the
contribution of the Adler-Bell-Jackiw (ABJ) anomaly [1] tothe form factor, which validates the
following application. The second is the application to theestimate of the hadronic light-by-light
(L-by-L) scattering amplitude, which is significantly important to the calculation of the muong−2,
aL−by−L

µ [2]. Since, in contrast to the vacuum polarization diagram,no experimental result gives
useful information to the estimate of the L-by-L diagram, purely theoretical estimate is required.
However, the L-by-L diagram is the four-loop one containingnonperturbative pieces, and hence it
is not easy to estimate it from the first principles [3]. One ofthe well motivated phenomenological
estimates is based on the assumption that the L-by-L scattering amplitude is dominated by the
effective diagram containingγγ∗ → π0 andπ0 → γ∗γ∗ transition form factors connected by a pion
propagator. Then various model dependent calculations of this supposed dominant contribution

result inaL-by-L
µ = (80∼ 130)×10−11 [4, 5, 6, 7, 8]. Therefore, model independent calculation of

π0 → γ∗γ∗ transition form factor is a valuable step toward the precisetest of the Standard Model [9]
together with testing the assumption of the effective diagram.

We study theπ0 → γ∗γ∗ transition form factor in soft Euclidean momentum region. Similar
attempt is seen in [10], in which the technique of [11] for charmonium decay to two photon state is
applied. Since the axial-anomaly plays a key role, the exactchiral symmetry and flavor SU(2) sym-
metry are desirable in the lattice calculation. We therefore apply the overlap fermion formulation.
We use theN f = 2 dynamical overlap fermion configurations generated on a 163 × 32 lattice at
β = 2.3 [12], which corresponds to the inverse lattice spacinga−1 = 1.67 GeV. Topological charge
is fixed toQ = 0, which induces an improvable finite size effect [13]. For chiral extrapolation, we
take four values of quark mass,mq = 0.015, 0.025, 0.035, 0.05, approximately covering the range
of ms/6 to ms/2 with ms the physical strange quark mass.

2. π0 → γγ transition form factor

In the continuum theory theπ0 → γγ transition form factor,fπ0γγ(p1, p2), is defined through a
matrix element of two electromagnetic (EM) currentsV EM between the pion state and the vacuum,

∫

d4xeip2x〈π0(q)|V EM
ν (x)V EM

µ (0)|0〉 = εµναβ pα
1 pβ

2 fπ0γγ(p1, p2), (2.1)

wherep1, p2 are Minkowski photon four-momenta andq = −p1− p2 is the pion four-momentum.
fπ0γγ(p1, p2) can be extracted from the three point function of an axial-vector current and two EM
currents via

∫

d4x
∫

d4ye−i(qx+p1y)〈0|T{∂A3(x)V EM
ν (y)V EM

µ (0)}|0〉

= −
fπm2

π
−q2+ m2

π
εµναβ pα

1 pβ
2 fπ0γγ(p1, p2)+ · · · . (2.2)

with the pion decay constantfπ = 131 MeV. The ellipsis represents excited state contributions
which have the same quantum number with a pion. In the Euclidean lattice calculation, we only
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have a direct access to the negativeq2 region, and we mainly focus on the small negativeq2. Thus,
in the following preliminary analysis, we assume that the first term of (2.2) gives the dominant
contribution, and the excited state contributions are ignored.

To evaluate the three-point function on the lattice, we use acombination of the conserved axial-
vector current (Acv

µ ) and the non-conserved local EM currents (V EMloc
µ ). With the overlap fermion

formulation the conserved current takes a non-local formAcva
µ (x) = ∑y,z q̄(y)τaKA

µ (y,z;x)q(z) where
KA

µ (y,z;x) is a kernel derived from the flavor non-singlet axial transformation [14]. τa is the gen-
erator of flavor SU(2) Lie group normalized by trτaτb = δ ab. The local EM current is defined as
V locEM

µ (x) = Zq̄(x)Qeγµq(x) with a quark charge matrixQe = diag(2/3,−1/3). The renormaliza-
tion factorZ = 1.3842(3) is obtained non-perturbatively [15]. This local current does not satisfy
the charge conservation and thus unphysical contamination(lattice artifacts) can appear in the re-
sult as will be discussed later. Since the EM current consists of the flavor triplet and singlet parts,
the evaluation of the three point function〈Acv3

ρ V locEM
ν V locEM

µ 〉 requires to calculate both connected
and disconnected quark diagrams. Since we do not calculate disconnected ones, we simply ignore
it in the following analysis.

We define two three-point functions of type (axial-vector)-(EM vector)-(EM-vector) and (pseudo-
scalar)-(EM vector)-(EM vector) by

GAVV
µν (P2,Q) = ∑

x,y
e−iQx−iP2y

〈

∇Acv3(x)V locEM
ν (y)V locEM

µ (0)
〉

c
(2.3)

= tr[τ3Q2
e]

〈

∑
x,y,y′ ,z′

e−iQx−iP2y2ReTr[Sq(0,y′)∂ xKA(y′,z′|x)Sq(z
′,y)γν Sq(y,0)γµ ]

〉

, (2.4)

GPVV
µν (P2,Q) = ∑

x,y
e−iQx−iP2y

〈

2mqProt3(x)V locEM
ν (y)V locEM

µ (0)
〉

c
(2.5)

= 2mqtr[τ3Q2
e]

〈

∑
x,y,y′

e−iQx−iP2y2ReTr[Sq(0,y′)ΓP(y′,x)Sq(x,y)γν Sq(y,0)γµ ]
〉

, (2.6)

where〈〉c denotes the connected contraction,〈〉 denotes the statistical average,Sq(x,y) denotes the
quark propagator andΓP(x,y) = (1−Dov/M0)γ5(x,y). “tr” represents the trace for flavor indices
and “Tr” represents the trace for color and spinor indices. The P1,2, Q are Euclidean momenta
of two photons and a pion, respectively. On the lattice they are dicretized as 2πnµ/(Lµa), with
the lattice spacinga and the lattice sizeLx,y,z = 16, Lt = 32. The pseudo-scalar density operator
Prot3(x) = q̄(x)τ3γ5[(1−Dov/M0)q](x) forms the axial-Ward-Takahashi identity withAcv3

µ . The
reason for considering (2.6) will become clear soon. In the above equation∇Acv denotes the for-
ward derivative∇Acv(x)≡∑ρ [Acv

ρ (x+ ρ̂)−Acv
ρ (x)]. We apply the source method for spatial integral

overy with P2 = (0,0,0,P2t ) andν = 1. After making Fourier transformation forty andx, we ob-
tain GAVV

µν (P2,Q) andGPVV
µν (P2,Q) for eachµ = 1 ∼ 4 andP2t . The remaining momentumP1 is

determined by the momentum conservation,P1 = −Q−P2.

The flavor non-singlet axial Ward-Takahashi (AWT) identityfor the three point functions can
be expressed as

GAVV
µν (P2,Q) = GPVV

µν (P2,Q)+ 〈(δ 3
AV locEM

ν )V locEM
µ 〉c(P2)δ 4(Q)

+ 〈V locEM
ν (δ 3

AV locEM
µ )〉c(P2)δ 4(Q)+ · · · (2.7)
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where the second and third terms are contact terms coming from lattice axial transformation,
δ a

AV b
µ = q̄γ5γµτaτbq+ q̄γµτbτaγ5(1−Dov/M0)q for 〈V locEM

ν V locEM
µ 〉. These terms do not contribute

to fπ0γγ(P1,P2) asQ = 0 impliesP1 = −P2, for which the three point function (2.2) vanishes due to
its Lorentz structure. Since we ignore the disconnected diagram, there may be some contributions
denoted by ellipsis. Thus, we calculate the both sides independently to estimate the potential size
of disconnected diagrams.

Theπ0 → γγ transition form factor is extracted from the three-point function with the follow-
ing momentum assignments:

P1 = (0,P1y,0,0) at µ = 3, or P1 = (0,0,P1z,0) at µ = 2. (2.8)

Then the only nonzero term is the one proportional toP1α P2β εµναβ . Furthermore, these momentum
assignments suppress a class of lattice artifact due to the violation of Lorentz symmetry and EM
charge conservation. SinceP1 and P2 are orthogonal to each other and have only one nonzero
component, Lorentz violating terms such as(P2

1µ +P2
2ν)P1α P2β εµναβ vanish. Therefore we obtain

F lat(P1,P2) = GAVV
µν (P2,Q)

/(

∑
αβ

P1αP2β εµναβ

)

= −
fπm2

π
Q2+ m2

π
fπ0γ∗γ∗(P1,P2). (2.9)

up to contributions from excited states and disconnected diagrams. SinceP1,2 are defined in the
Euclidean space-time, the on-shell condition is realized only at zero momentumP1 = P2 = 0. Note
that we numerically check the consistency ofF lat obtained fromGAVV

µν andGPVV
µν within the sta-

tistical error. F lat(P1,P2) from (2.9) are averaged over the two physically equivalent momentum
assignments in (2.8).

3. Results

First we test if the ABJ anomaly [1]

fπ0γγ(0,0) =
1

4π2 fπ
, (3.1)

is reproduced in the chiral and the photon’s on-shell limit.The data are extrapolated to the zero
momentum and zero quark mass limit assuming a fit function. Here we consider the vector meson
dominance (VMD) model as an ansatz. Since we neglected disconnected diagrams, the EM vector
current only couples toρ meson. The functional form is

FVMD (P1,P2;Xa) = −
m2

π
Q2+ m2

π
XaGv(P1,mv)Gv(P2,mv), (3.2)

with a free parameterXa, which is supposed to correspond to the axial-anomaly,Xa = fπ fπoγγ(0,0).
The vector meson propagator is

Gv(P,mv) =
m2

v

P2 + m2
v
, (3.3)

wheremv denotes a vector meson mass. The vector meson mass is determined independently
from an exponential fit of a smear-local vector current correlator. Performing chiral extrapolation
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Figure 1: Lattice results forF lat(P1,P2) at a fixed(aP1)
2 ≃ 0.154 as a function of(aP2)

2 and fit function of
FVMD (P1,P2;Xa) (solid curve) andFVMD+(P1,P2;Xa,c3,c4) (dashed curve) for each quark mass. Thin lines
denote the VMD (dashed-dotted) and VMD+(solid) in physicalpoint.

with a linear function,mv = m0
v + cvm2

π , we obtainm0
v = 0.798(19) GeV, which reasonably agrees

with the physicalρ meson mass 0.775 GeV. Since we encoded the quark mass dependence of
FVMD (P1,P2;Xa) into m2

π andmv, only one free parameterXa is left for the fit of the lattice data. In
Fig. 1, we plotF lat(P1,P2) at (aP1)

2 = 0.154, which is the minimum non-zero value, as a function
of (aP2)

2. The fit results at different quark masses are also shown by solid curves, where the fit
point is taken to be(aQ)2 = 0.039. From this plot we can see that lattice data andFVMD (P1,P2;Xa)

are in good agreement at the lowest momentum. We obtain

Xa = 0.0260(6), (3.4)

which is fully consistent with the expectationXa = 1/(4π2) = 0.02533 despite of various crude
approximations. The main reason is the exact chiral symmetry; the existence of the conserved
axial-vector current significantly reduces lattice artifact.

Going beyond the minimum value of the momenta, the fit curves deviate from the data point.
To accommodate this deviation, we modify the fit form by incorporating an excited vector meson
state as

FVMD+(P1,P2;Xa,c3,4) = −
m2

π
Q2 + m2

π
Xa

[

c3Gv(P1,mv)Gv(P2,mv)

+
c4− c3

2
(Gv(P1,mv)+ Gv(P2,mv))+1− c4

]

, (3.5)

with mass dependent couplings,c3 = 2− c0
4 + cm

3 m2
π and c4 = c0

4 + cm
4 m2

π . In this fit form, the
propagator of the excited vector meson is approximated by a constantGv′(P,mv′) ∼ 1 (see Fig. 2).
We have four free parameters. This parametrization [16] satisfies the anomaly relation (3.1). We
impose a constraint limm2

π→0(c3 + c4) = 2, so that the transition form factor in the highQ2 limit
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Figure 2: Vertecies ofπ0 → γ∗γ∗ decay. The dashed and waved lines show pion and photon propagator, and
double-line and dotted lines show vector resonance and its excited state propagator respectively.

scales as 1/Q2 as suggested by perturbative QCD [17]. We note that a phenomenological estimate
leads to(c3 + c4)/2|phenom= 1.06(13) [16]. Setting the fit range to 0.039≤ (aP2)

2 ≤ 0.347, we
obtain the dashed curves in Fig. 1. Compared with the naive VMD fit (3.2), the agreement of the
fit with the data in momentum range of(aP2)

2 > 0.039 is improved especially at larger quark mass
region. Fit parameters obtained using (3.5) arec0

4 = 1.20(21), cm
3 =−8.4(8.6), cm

4 =−1.3(5.8) and
Xa = 0.0243(29). Again Xa is consistent with the expectation. Furthermorec0

4 is consistent with
unity, which implies that the VMD approximation is reasonable and the coupling with the excited
vector meson state gives a sub-leading contribution. In Fig. 1 we also show the comparison with
VMD and VMD+ curves in the physical pion andρ meson mass. The difference between the two
lines are almost negligible.

The construction of reasonable fit function forfπ0γ∗γ∗ over higher momentum region is impor-
tant when estimating the hadronic L-by-L diagram, because it is necessary to integratefπ0γ∗γ∗(P1,P2)

from zero to infinity in bothP2
1 andP2

2 . This study provides suggestive information that the VMD
model describes the data offπ0γ∗γ∗(P1,P2) reasonably well, and inclusion of its excited state signif-
icantly extends the safe usage to larger momentum region.

4. Summary

We studied theπ0 → γγ transition form factor by calculating the three point function, 〈AVV 〉,
on theN f = 2 dynamical overlap fermion configurations. The data offπ0γ∗γ∗ is fitted to the VMD
motivated functions, and in the chiral and the on-shell photon limits the ABJ anomaly,fπ0γγ(0,0) =

1/(4π2 fπ), is reproduced. It is also found that the fit function based onthe VMD model well
describes the behavior of mass dependence at the lowest momentum in which the higher resonance
contribution is small. Although the present work is feasible study and there are many things which
have to be understood, our result encourages us to apply to the non-perturbative estimate of the
hadronic L-by-L scattering amplitude.
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