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D semi-leptonic decay with HISQ action H. Na

1. Introduction

Understanding th® — mandD — K semi-leptonic decays is an important topic in Charm
physics. Furthermore, lattice studiesldemi-leptonic decays are of particular interest for several
other reasons as well. First of all, one can test lattice formulations of igesgni-leptonic decays
by studying theD semi-leptonic case. For exampé,,| and|Vcp| can be determined fro semi-
leptonic decays, and these are very important parameters to understihghysics and test the
Standard Model. However, simulatiigmesons is, in general, more difficult thBhmesons. In
B semi-leptonic decays, the maximum momentum transfgy, is much larger than iD semi-
leptonic decays. In fact, one can cover the erdfreegion ofD semi-leptonic decays on the lattice,
while, for B semi-leptonic decays, that would be challenging. In addition, the chartordezs
been studied extensively in experiments as well. Thus, we would like to tekittive formula-
tion in the charm sector. Moreover, studying D semi-leptonic decays aatidgran independent
determination ofV¢s and|V¢q|.

The D semi-leptonic decay form factors, (g°) and fo(g?), can be defined as

—m3 mg — mé
(miv¥|D) = f+(q2)[p‘5+p‘é—m%q2"q“]+ fo(@”) =z o (1.1)
where the momentum transfgf = ph — pf. Note that
f(0? =0) = fo(q? = 0), (1.2)

because of kinematics. This is the conventional definition of form factdrigh is normally used
in experiments. For lattice calculations, it is more convenient to define thefémtors as

(mVH|D) = /2mp V" f(Er) + P, fL(En)], (1.3)

wherevH = p% andp? = pli— (pr-V)V¥. This definition is particularly useful for lattice calcula-
tions in theD rest-frame ¥ = (1,0,0,0) andp, = (0, Pr)), because each form factor is determined
from the temporal current matrix element or the spatial current matrix eler@gpectively;

<7T’V0‘D> <mVI‘D> ii{Gev—l/Z]. (1.4)
V2mp V2mp Pr

So, the traditional strategy is to calculafqpand f, on the lattice, take the continuum and chiral
limit, and then convert td and fg using the following relations;

f)(En) = GV, 11 (En) =

() = 2 (Mo M) () (E ) 1, (Ex)]. 15)
(@) = e 11 (En) (T ~ En) . (Ex)] (L.6)

We can, then, compare the lattice calculation to experiments. In this talk, wenpeesew strategy
that allows us to calculate the relevant form factors from the scalamtyBerather than the vector
current(Vy) (Sec. 2 and 3), and the more traditional method ugifg (Sec. 4).
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2. Formalism

We apply the HISQ actiorj[1] for all valence quarks; light, strange, dradra quarks. As we
use the HISQ action, there are several noticeable advantages. Wencdaiies relativistic charm
quarks, since the HISQ action has small enough discretization eftordrjlgddition, we can
formulate a fully non-perturbative renormalization.

Consider the following relation between the vector and scalar currents aotit@uum;

g (VM) = (me — mg) (SO, (2.1)

where (VSO™) = (mVoM|D), (S°™) = (m|SdD), andq represents a strange or light quark. The
RHS of Eq[2.]l does not require any operator matching factor (the cotidingrenormalization
group invariant). Thus, one can write down the same relation on the lattice afarator matching
factorZ just on the LHS;

q* (V) Z = (me — mg)(S™), (2.2)

whereS? s the local scalar current. This relation is only valid when we use the same &otio
all valence quarks, and the action has enough chiral symmetry. If @sadifferent types of action
for different quark species, then the RHS of Eg] 2.1 is no longer RGiana This is because the
mass renormalization factors for charm and light quarks would be différegeneral.

In the D rest-frame, E2 can be re-written

(Mp — En) (Vo) Zt + P~ (V) Zs = (me — mg)(S), (2.3)

whereZ; andZg are theZ factors for temporal and spatial vector current respectively. We now
omit a superscriptiat’ on the currents. Note tha; andZs can be different in general. Using this
relation, one can extra@ factors fully non-perturbatively. We will explain this in more detail in
Sec. 4.

The scalar current matrix element can be written in terms of a single fornr fagto

Mo

2
= o=, o(q°). (2.4)

(S
One can simply derive this relation from Hg.]1.1 2.1. Therefore, weobtain fo(q?) from
(9, ( s

Me — My

fo(Q?) = —5— 2.5
The numerator of the RHS is the same RG invariant combination as [n [q. 2 theaslenominator
is a mass difference of the bound-states. Therefore, we can caldyl(gfé with no need for
operator matching. This is the most interesting feature due to the fact thatenbaiHISQ action
for all valence quarks. In addition, using this method, we can deterfirs g°> = 0, because of
Eq.[L2;
(Me —My)(S)

Mg —mg =0’

f+(0) is a very important quantity, since we can estimatg and|Vcqy| by combiningf, (0) and
experimental inputs.

£,(0) = fo(0) = (2.6)
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3. Test run for fo(g?) and f, (0) from (S)

We have performed an exploratory analysis with MILC configurations with @ynamical
flavors. The configurations that we use are 300 coarse latticés<«(@B) with sea quark masses
Upam = 0.01 andupams = 0.05 [@]. We calculate charm and strange quark propagators using
the HISQ action with quark massasy, = 0.0546 andam. = 0.66. For each configuration, we
calculate propagators with a point source at two different time slices. Véetifaur discrete
spatial momentap = (0,0,0),(1,0,0),(1,1,0), and(1,1,1). The non-perturbatively determined
renormalization factoe of the Naik term of the charm quark s0.21 [3].

In this test run, we calculaté(g?) of Ds — ns, |v; semi-leptonic decay using Ef. R.5. We
use the local scalar current, and the Goldstone taste fdddlaadns. In the analysis, we perform
Bayesian fits to the three-point function and the two-point functiori3sand ns simultaneously.
We use fit model functions for two and three-point functions,

nexp 0 0 nexpo . .
Cg (t) = Z aﬁz(e_Ent+e_En (Nl—t>)+ z (_1)ta_l(;12(e—EOt+e—Eo (Nt—t))7
n=1 &
nexp 5 5 nexpo - -
CGt) = Y aie ™ +e =M+ 3 (-h@He ™ e =), (3
n=1 o=1
nexpnexpo B
C3(t) = Z Z [Anne*Erq'[e*Er?(Tft) + (*1)T7tAn0e7ErqtefE0D(T7t)
n=1 o=1

4 (—1)tAone*Egte*E'?(T*t) + (—1)TAooe*E’qte*€f?(T*t)] ’

where the states with a bar are the negative parity stateg, @&he distance between the sources
of the light and heavy mesons. We chodse- 19 for this test run. We can impose stronger
constraints on the meson masses and amplitudes by taking larger fit time donmahmes ficeson
two-point functions. Note that the correlatormpfat zero momentum consists of the positive parity
states only.

The resultis shown in Fid] 1. The four data points in the figure represer, 1, 1), (1,1,0),
(1,0,0), and(0,0,0) from the left. We take an average over equivalent momenta to increase statis
tics. The result ofs = (1,1, 1) is accidentally very close t? = 0, so in this particular test case,
we do not need to worry about extrapolationgjte= 0. We expect to achieve much smaller errors
in the future, since we can improve our calculation using random-wall saeahniques, more
statistics, and multipl& values.

4. Test run for the form factorsfrom (V) with afully non-perturbative matching

We showed a new method that will lead to the most accurate determinatibn(qf = 0),
however we are still interested in the calculation of the form factors usingatiional method to
test the new method and estimate tRelependence of,.. The traditional method was described
in Sec. 1.

The vector current and pseudoscalar operator in the continuum are

V;Ilocal = Ug(X) Yu Yo (X) O = Pg(X) ys P, (%), (4.1)
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Figure 1. fo(g?) from (S). The errors are statistical errors only. The two numbersvbéhe data points are
the relative errors.

which are local operators. However, we cannot simply use thesetoper@ the lattice with
the Goldstone taste mesons, because we use the staggered fermion fornhalsmer to ob-
tain non-zero matrix amplitudes, we need to consider non-local vectartwr non-Goldstone
pseudoscalar operators, for example

VES T = () Yy (Xt 1) — Pa(y) [y @1]We ()

O™ = Gig(3) YoYs g, (X) — Wa (V) [Yo¥s @ Y6 Wo (¥), (4.2)
whereW is the fermion field in the spin-taste basis. In this study, we choose the spatigraporal
currents differently;

<\40n&|ink> — (Goldstone'[s|\/i°”€“””k]GoldStOHEDs)
(vgeealy = (Goldstonens|Vy°® |non— GoldstoneDs) (4.3)
We tested the temporal matrix elements with all possible combinations of Goldstdneoan
GoldstoneDs and ns, V2" "k, andV}°ca. We obtained consistent results for all combinations,

and the choice of Eq. 4.3 gives the best results. These combinationthgigeallest statistical
errors, because the taste splitting for Exeis smaller than that of thgs.

4.1 fo(qz)

In the traditional method, we need to calculate ffisindf, separately as explained in Hq]1.4.
The results forfy and f, before the renormalization using Hq.]4.3 are shown in[Fig. 2 (a).

After we getfy using Eq[1}5 (green diamonds in Higy. 2 (b)), we need to estimate the operator
matching factors. Taking into account th&atandZs can be different, we re-write Ef. [L.5 with

factors;
V2mp
fo(qz) = IT% _ rnz
/i3

In fact, we do not need to considgsfor fo, since(E2 —mz) is small relative tqmp — my;) andZs
is close to one. Using E{. 2.3 fit= (0,0,0), we can obtairZ;

[(Mp — M) Z: £ (Ex) + (EZ— M) Zsf L (En)].- (4.4)

M- <S>’p:(0,o,0)

4 =
Mo —Err (Vo) [5-(0.00)

= 1.037(5). (4.5)
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Figure2: fj andf, from the traditional method are shown in (d)(q?) without Z; and withZ; are shown
in (b). fo(g?) from (S) is also shown for comparison. Form factors are calculat the samey values,
but data points are shifted in the figures for clarity.

Using thisz; andZs = 1, we getfo(q?) (red squares in Fid] 2 (b)), which is consistent wigha?)
from (S).
42 £ ()

We can also re-write Eq. 1.6 withfactors forf, (¢?),

fL(cf) = ﬁlﬁ[zt £ (Ex) + (Mo — Ex)Zef. (Ex). (4.6)

Zs now plays an important role for,. When we fixz; at p = (0,0,0), then we can obtaids by

(me —ms)(S) — (Mo — Em)Z (B = (0,0,0)) (Vg
P <\70ne—|ink>

Zs= , 4.7)
sinceZ factors are not supposed to depend on momentum. The result is shown h(B)g As
one sees, the errors &f are much larger than the error 4f. This is becausgs is estimated from
subtracting two positive quantities. As a result, the erroZpis large, even though the relative
error of each term irZs is comparable to the relative error &f. The result off. (g?) is shown
in Fig. B (b). This is a very preliminary result. We hope that we can addhesbest strategy to
calculatef , (g?) with correctZ factors in the future.

5. Summary and future plan

We presented a new method to calculate form facto3 sémi-leptonic decays. We showed
how we calculatef , (g7 = 0) and fo(g?) with no need for operator matching in Sec. 2 and 3. This is
a general approach applicable to any semi-leptonic decays. For instaeazan apply this method
to K — 1 semi-leptonic decay. If we have relativistic bottom quarks, we can caldBlaterr and
B — D*(D) semi-leptonic decay form factors as well, although one will still have thelpnolof
large g2, The important thing is that the action should have enough chiral symmetraland
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Figure 3: Z factors (a), and, (g?) from the traditional method (b). Form factors are calculdtem the
sameg? values, but data points are shifted in the figures for clarity

valence quarks should be calculated from the same action. In this expjovaidk, we showed
that the HISQ action is quite promising fBrsemi-leptonic decay with this new method. It should
be possible to obtaif, (g2 = 0) with significantly smaller errors than the current published theory
errors of~10% [4]. It is also possible that we can replace the most accurate detéonioé

\Vea| from neutrino and antineutrino scatterifg [5]. We plan to improve our caloalay applying
random-wall source techniques, adding more statistics, using smaller latitiagg and working
with multiple T values. We will also investigate the continuum and chiral extrapolations, and
extrapolations t@? = 0 to complete this project.

In Sec. 4, we also presented the traditional method bas&d,orwith fully non-perturbative
renormalization. We confirm that this traditional method and the new methodasistent with
each other. It gives larger errors, however it is still interesting. Usilgmethod, one can get the
g? dependence of,.. We are still exploring other strategies for non-perturbative renornializa
of V,;, which will reduce our current error 6.
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