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Lattice calculations of the form factors for the charm semileptonic decaysD→Klν andD→ π lν
provide inputs to direct determinations of the CKM matrix elements|Vcs| and |Vcd| and can be

designed to validate calculations of the form factors for the bottom semileptonic decaysB→ π lν
andB→ Kl l̄ . We are using Fermilab charm (bottom) quarks and asqtad staggered light quarks on

the 2+1 flavor asqtad MILC ensembles to calculate the charm (bottom) form factors. We outline

improvements to the previous calculation of the charm form factors and detail our progress. We

expect our current round of data production to allow us to reduce the theoretical uncertainties in

|Vcs| and|Vcd| from 10.5% and 11%, respectively, to about 7%.
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1. Introduction

The CKM matrix elements|Vcs| and |Vcd| can be extracted to greatest precision (currently to
0.02% and 0.4%, respectively) by assuming CKM unitarity andperforming a fit to all data [1].
However, the simplest tests of unitarity require direct determinations of the CKM matrix elements.

The decay rate forD → K(π)lν is proportional to a form factor and|Vcs| (|Vcd|). Experiments
can measure the decay rates and the form factor shapes, but nonperturbative calculations of the
strong force are required to fix the form factor normalizations and extract|Vcs(d)|. Therefore these
decays allow direct determinations of|Vcs(d)| and consistency checks between lattice QCD and
unitarity. Such consistency increases our confidence in both.

In June CLEO-c published the results of an analysis of 818 pb−1 collected at charm threshold
[2]. Combining the CLEO-c results with the first 2+1 flavor lattice calculations of theD → K(π)lν
form factors [3, 4] yields|Vcs(d)| [2]:

|Vcs| = 0.985(1±0.9%±0.6%±10.5%), (1.1)

|Vcd| = 0.234(1±3%±0.9%±11%). (1.2)

The first errors are experimental statistical errors, and the second are experimental systematics. The
third errors are due to uncertainties in the lattice QCD calculations. The theory errors dominate the
uncertainties.

Discretization effects are the dominant source of the theory errors [3]. Other uncertainties
enter because of incomplete suppression of oscillations due to opposite-parity states, truncation
effects in fits to staggered chiral perturbation theory (SχPT), and model-dependence implicit in the
Becirevic-Kaidalov (BK) parameterization [3, 5].

These sources of uncertainty were addressed in work onB→ π lν decays [6]. By calculating
theD → K(π)lν form factors using the same methods, we may be able to validate their application
to calculations of the form factors forB→ π lν andB→ Kl l̄ . The former decay allows a precise
determination of|Vub| and a stringent test of unitarity. The latter is a rare decay and a prime
candidate for new physics. Below we describe our progress inreducing the uncertainties in the
charm form factors and anticipate the reduction of the uncertainties in|Vcs(d)|.

2. Ensembles and quark masses

To decrease discretization effects and improve our controlof the chiral extrapolation, we are
generating full QCD and partially quenched data on each of the ensembles shown in Table 1.
These ensembles include the four most chiral coarse ensembles used in the calculations of Ref. [3],
the two fine (a ≈ 0.09 fm) ensembles included in our recent calculation of the form factor for
B → π lν [6], two additional fine ensembles, three superfine (a ≈ 0.06 fm) ensembles, and one
ultrafine (a ≈ 0.045 fm) ensemble [7]. The MILC Collaboration has increased the number of
configurations in each of the previously used coarse and fine ensembles by a factor of four, and we
expect a corresponding decrease in all statistics-dominated uncertainties by a factor of two.

We have found that randomizing the spatial location of the sources significantly decreases
autocorrelations in 2-point functions, which suggests that we may be able to increase our statistics
further by increasing the number of source times on each configuration. We have nearly completed
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≈ a (fm) aml/ams Volume Ncon f amvalence

coarse 0.12 0.02/0.05 203×64 2052 0.005, 0.007, 0.01,
0.01/0.05 203×64 2259 0.02, 0.03, 0.0415,
0.007/0.05 203×64 2110 0.05; 0.0349
0.005/0.05 243×64 2099

fine 0.09 0.0124/0.031 283×96 1996 0.0031, 0.0047, 0.0062,
0.0062/0.031 283×96 1946 0.0093, 0.0124, 0.031;
0.00465/0.031 323×96 983 0.0261
0.0031/0.031 403×96 1015

superfine 0.06 0.0036/0.018 483×144 668 0.0036, 0.0072, 0.0018,
0.0025/0.018 563×144 800 0.0025, 0.0054, 0.0160;
0.0018/0.018 643×144 826 0.0188

ultrafine 0.045 0.0028/0.014 643×192 861 TBD

Table 1: Asqtad staggered quark ensembles generated by the MILC Collaboration [7, 8, 9] and slated for
upcoming heavy-light analyses, together with the valence quark masses being used at each lattice spacing.
The last valence mass listed at each lattice spacing (after the semicolon) is the tuned strange quark mass. We
are presently generating correlators at four source times on each ensemble and investigating the possibility
of adding more source times to further increase the total number of source-configurations.

data generation at four source times on the coarse ensembles, the fine ensembles withml = 0.4ms,
0.2ms, and 0.1ms, and the superfine ensemble withml = 0.2ms.

Power counting arguments [3, 6] indicate that including these ensembles will effectively elim-
inate discretization effects due to light quarks and gluons, while heavy-quark discretization effects
will be reduced but remain significant. To improve our estimates of heavy-quark discretization
effects, we are investigating including them in chiral-continuum expansions [10]. This approach
incorporates the information from power counting while more systematically fixing the appropriate
hadronic scales.

3. Correlators and correlator ratios

The form factors parameterize the hadronic matrix elementsof the flavor-changing vector
currents,

〈K(π)|Vµ |D〉 =
√

2mD

[

vµ f D→K(π)
‖ (q2)+ p⊥µ f D→K(π)

⊥ (q2)
]

, (3.1)

whereVµ is the lattice current corresponding tois̄γµc (id̄γµc), v = pD/mD is the four-velocity of
theD meson,p⊥ = pK(π) − (pK(π) ·v)v is the component of kaon (pion) momentum perpendicular
to v, andq2 ≡ (pD − pK(π))

2 is the invariant mass of the leptons. We work in theD-meson rest
frame, in which the form factors are proportional to the temporal and spatial components of the
hadronic matrix elements, andq2 = m2

D +m2
K(π) −2mDEK(π).

One way to extract the hadronic matrix elements is by considering simple ratios of 3-point to
2-point correlators [3],

CD→K(π)
3,µ (t,T;pK(π))

CK(π)
2 (t;pK(π))CD

2 (T − t)
, (3.2)

3



P
o
S
(
L
A
T
2
0
0
9
)
2
5
0

Progress on D→ K(π)lν form factors Jon A. Bailey

whereT is the separation between source and sink in the 3-point functions, and

CD→K(π)
3,µ (t,T;pK(π)) = ∑

x,y
eipK(π) ·y〈OK(π)(ti ,0)Vµ (t,y)O†

D(t f ,x)〉,

t ∈ [ti , t f = (ti +T) modnt ], (3.3)

CK(π)
2 (t;pK(π)) = ∑

x
eipK(π) ·x〈OK(π)(ti ,0)O†

K(π)(t,x)〉,

t ∈ [ti , t f = (ti +nt) modnt), (3.4)

CD
2 (t) = ∑

x
〈OD(ti ,0)O†

D(t,x)〉, t ∈ [ti , t f = (ti +nt) modnt). (3.5)

wherent is the temporal extent of the lattice, andpK(π) is the momentum of the outgoing kaon
(pion). We calculate the correlators for momentapK(π) = (0,0,0), (1,0,0), (1,1,0), (1,1,1), and
(2,0,0) (in units of 2π/L, whereL is the spatial extent of the lattice) and all timest in the ranges
shown. We increase statistics by averaging correlators with source timesti = 0, nt/4, nt/2, 3nt/4.
TheD-meson interpolating operatorsO are smeared with a charmonium wavefunction to suppress
coupling to excited states.

C3 is calculated with insertions of the current operator at alltimest between the source and
sink. At sufficiently large source-sink separationsT and timest sufficiently far from both source
and sink (0≪ t ≪ T), a plateau emerges in the ratio (3.2). This plateau is directly proportional to
the desired hadronic matrix element.

In practice we find that oscillations from opposite-parity excited states contaminate the en-
tire plateau region [3, 6]. We therefore consider the more carefully constructed correlator ratios
introduced in Ref. [6]:

R
D→K(π)
3,µ (t,T;q2) ≡

1
φK(π)µ

C
D→K(π)
3,µ (t,T;pK(π))

√

C
K(π)
2 (t;pK(π))C

D
2 (T − t)

√

2EK(π)

e−EK(π)te−mD(T−t)
, (3.6)

whereφK(π)µ ≡ (1, pK(π)) and the correlatorsC3, C2 are constructed from the correlatorsC3, C2

to eliminate oscillations from opposite-parity states:

C3(t,T) ≡
1
8

[

C3(t,T)+C3(t,T +1)emD +2C3(t +1,T)eEK(π)−mD +2C3(t +1,T +1)eEK(π)

+ C3(t +2,T)e2(EK(π)−mD) +C3(t +2,T +1)e2EK(π)−mD

]

, (3.7)

C2(t) ≡
1
4

[

C2(t)+2C2(t +1)emD +C2(t +2)e2mD
]

. (3.8)

Experience suggests that the errors in direct fits to the oscillating states can be larger than errors in
simpler fits. The construction of (3.6) and (3.7, 3.8) allowsus to fit the ratios to constants without
introducing systematic errors. In the plateau region (0≪ t ≪ T), the ratiosR

D→K(π)
3,µ for µ = 0

(µ = i) approach the form factorsf D→K(π)
‖ ( f D→K(π)

⊥ ).
For source-sink separationsT = 16 andT = 20, examples of the plateaus are shown in Figs. 1

and 2, where the features leading to the choice of theseT-values can also be seen. As the source-
sink separation increases, signal-to-noise decreases. Asthe source-sink separation decreases, the
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Figure 1: Ratios of correlators for extracting the form factorf D→π
‖ (q2). The correlators were calculated on

2110 configurations of the coarse ensemble withml = 0.14ms. T = 16, 20 are the source-sink separations,
and the three-momenta p of the pions are given in units of 2π/L, whereL is the spatial extent of the lattice.
Note the excited state contamination in the zero momentum data withT = 16.

plateau region shrinks and eventually disappears. The optimal T-value is the smallest for which a
plateau exists. For thisT, signal-to-noise is maximized without sacrificing the plateau to excited
state contamination. The statistical errors increase withmomentum, so the optimalT is momentum
dependent.

To optimizeT we generated data withT = 16, 18, and 20 on the coarseml = 0.14ms ensem-
ble. As shown in Figs. 1 and 2, forT = 20 plateaus exist for all momenta. At zero momentum,
comparing theT = 16 data with theT = 20 data reveals the effects of excited state contamination
in theT = 16 data for allt; the plateau has essentially vanished. At nonzero momentum, comparing
theT = 16 data with theT = 20 data reveals smaller statistical errors in theT = 16 data with intact
plateau regions. The largerT allows checks for excited state contamination at smaller momenta,
and the smallerT allows us to minimize statistical errors at larger momenta.On the remaining en-
sembles, we expect the optimalT-value in physical units to be similar. We are therefore generating
data on each ensemble with twoaT-values of approximately 0.12 fm×16 and 0.12 fm×20.

4. Renormalization and chiral-continuum-energy extrapolation-interpolation

Lattice form factors obtained from the plateaus in Figs. 1 and 2 must be renormalized and
extrapolated to zero lattice spacing and the physical lightquark masses. The renormalization factors
can be written as products of non-perturbatively calculable factorsZV and perturbatively calculable
factorsρ . The uncertainties in these renormalization factors contribute to the uncertainties in the
form factors and CKM matrix elements.

To perform simultaneous chiral-continuum extrapolationsand the kaon (pion) energy inter-
polation, we can use staggered heavy meson partially quenched chiral perturbation theory (χPT)
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Figure 2: Ratios of correlators for extracting the form factorf D→π
⊥ (q2). The correlators were calculated on

2110 configurations of the coarse ensemble withml = 0.14ms. T = 16, 20 are the source-sink separations,
and the three-momenta p of the pions are given in units of 2π/L, whereL is the spatial extent of the lattice.
The consistency of the results forT = 16 andT = 20 indicates that the smaller source-sink separation can
be used to minimize statistical errors without introducingsignificant excited state contamination.

with constrained curve fitting [6, 11, 12]. This approach incorporates the energy-dependence of the
form factors and yields a model-independent result while accounting for the systematic error due
to truncating the expansion.

To extract|Vcs(d)|, one can divide the experimental results [2] by the lattice form factors eval-
uated atq2 = 0. However, minimizing the uncertainty in|Vcs(d)| requires a simultaneous fit to all
(experimental and lattice) data. The analyticity-based parameterization described in Ref. [13] cap-
tures the energy-dependence of the form factors throughoutthe kinematic domains, so using it to fit
the data and extract CKM matrix elements does not introduce model-dependent systematic errors.

For D → K(π)lν , the energy-domains of the lattice and experimental data overlap signifi-
cantly, allowing a stringent test of the consistency of the shapes of the form factors as determined
independently by the lattice and experiment. This test provides important validation for applying
the analyticity-based parameterization to the extractionof |Vub| from B→ π lν , in which the overlap
of the lattice data and experimental data is smaller and thisself-consistency check, less powerful.

5. Expected uncertainties

A projected error budget for the form factors atq2 = 0 is shown in Table 2. The expected
uncertainties reflect previous experience withB→ π lν [6], including the use of improved correlator
ratios,χPT with constrained curve fitting, and the analyticity-based parameterization to eliminate
systematic errors due to incomplete cancellation of oscillating state contributions, truncation of the
chiral expansion, and model-dependence in the BK parameterization. The projections also reflect
the four-fold increase in statistics on the coarse ensembles and the addition of the two largest
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Stat.+ χPT gD∗Dπ r1 m̂ ms κc pπ HQ ZV ρ L3 < ∞ Sys. Total

4.9 2.9 1.4 0.3 1.3 0.2 0.1 3.9 0.7 0.7 0.5 5.4 7.3

Table 2: Contributions to the relative uncertainties in the form factors atq2 = 0 assuming data with four
source times on the four extended coarse ensembles, two largest fine ensembles, and the superfineml =

0.2ms ensemble. The errors are due to limited statistics and the truncation of chiral perturbation theory;
uncertainties in theD∗Dπ coupling, scale, average up-down quark mass, strange quarkmass, and charm
hopping parameter; momentum-dependent discretization effects from the light quarks and gluons; heavy-
quark discretization effects; uncertainties in the renormalization factorsZV andρ ; and finite volume effects.
The last two entries are the total systematics and the total error, both added in quadrature.

fine ensembles and the superfineml = 0.2ms ensemble. The increase in statistics decreases our
statistical uncertainties by a factor of two, while the addition of the superfine ensemble reduces
systematic errors due to heavy-quark discretization effects.

Heavy-quark discretization effects and the uncertainty inthe D∗Dπ coupling dominate the
systematic uncertainties, while statistics andχPT truncation error are alone comparable to the
entire remaining systematic error. Heavy-quark discretization effects are sensitive to the smallest
lattice spacings included, so they will decrease further with the addition of the ultrafine ensemble
in Table 1. The error due to theD∗Dπ coupling may respond to the increased statistics. From
Table 2 and Eqs. (1.1) and (1.2), we expect to reduce the theoretical uncertainties in the CKM
matrix elements from about 11% to about 7%.

Fermilab is operated by Fermi Research Alliance, LLC, underContract No.
DE-AC02-07CH11359 with the United States Department of Energy.
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