
P
o
S
(
L
A
T
2
0
0
9
)
2
5
5

G parity boundary conditions and ∆I = 1/2, K → ππ
decays

Changhoan Kim†

Columbia University, USA
E-mail: ck364@phys.columbia.edu

Norman Christ∗ †

Columbia University, USA
E-mail: nhc@phys.columbia.edu

RBC and UKQCD collaborations

The use of G-parity boundary conditions to compute∆I = 1/2,K →ππdecays is reviewed and a

method to consistently treat both the pions and kaon in full QCD proposed. This approach creates

a physical, final-state, pion momentum using a 3 fm box and avoids statistical noise coming from

pions with smaller momentum.

The XXVII International Symposium on Lattice Field Theory
July 26-31, 2009
Peking University, Beijing, China

∗Speaker.
†This work was partially supported by DOE grant #DE-FG02-92ER40699and by the RIKEN BNL Research Center.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
2
0
0
9
)
2
5
5

G parity boundary conditions and∆I = 1/2, K → ππdecays Norman Christ

The violation of CP symmetry in the two pion decays of theK meson offers an important
opportunity to uncover new sources of CP violation beyond those predicted by the standard model.
Of special interest is the direct CP violation parameterized byε ′ which is now experimentally
determined on the 10% level and sensitive to possible new phenomena on the TeV scale. An
accurate calculation of this quantity within the standard model requires the evaluation of matrix
elements of four-Fermi operators betweenK andπ−π states. Such matrix elements are within the
reach of lattice QCD methods. However, the presence of two particles in one of the states and the
need to the evaluate “vacuum” or “disconnected” diagrams, in which the initial and final states are
joined only by the exchange of gluons, make these calculations particularly difficult.

Here we focus on the difficulties of theπ−π final state, especially theI = 0 state with vacuum
quantum numbers. An attractive approach to these two-pion states uses chiral perturbation theory to
relate the two pion matrix elements of interest to simpler matrix elements between theK meson and
a single pion or the vacuum state. Unfortunately, recent results [1, 2] suggests thatSU(3)×SU(3)
chiral perturbation theory works poorly at the kaon energy leading to large systematic errors from
this approach. Thus, calculation of actualπ−π matrix elements have become important.

1. Overview of finite volume methods

The methods of lattice QCD construct the eigenstates of the full QCD HamiltonianHQCD by
studying Green’s function of interpolating operators at large separations in Euclidean time. In
this way the contribution of that eigenstate with the lowest eigenvalue ofHQCD is exponentially
enhanced. This results in the difficulty of Maiana and Testa [3] that when studyingK → ππdecays
the energy non-conserving matrix elements with the state of two pions at rest will be computed.

As is now well understood, this difficult can be diminished by exploiting the finite volume
in which lattice calculations are necessarily performed. In finite volume theπ−π eigenstates of
HQCD are a series of discrete states with energies shifted in a known way from those of two free
particles in a box by theπ−π interaction [4, 5].

However, working in finite volume also introduces a difficulty. The finite volume eigenstates
of HQCD are necessarily mixtures of different angular momenta because the usual cubic box is
asymmetric under rotations. Thus, the matrix element of a local weak operatorQi between the
K meson and finite-volumeπ−π eigenstate,〈K|Qi|ππ〉, is a product of the desiredl = 0 decay
amplitude and the amplitude for finding thisl = 0 state within the normalized finite volumeπ−π
eigenstate which is a superposition of different values ofl . This problem has been solved by
Lellouch and Luscher [6]. The needed correction can be made to adequate accuracy once the
π−π, l = 0 scattering phase shift has been determined for the relevant isospin chanel and energies.

Three methods that have been developed to deal with these finite volume states. In the first,
one tunes the linear sizeL of an L3×T space-time volume so the 2π/L (or more accurately the
quantized momentum which is determined by theπ−π scattering phase shiftδ(I)l=0) so that the
first excitedπ−π state has the energy of the kaon. For a physical pion this requiresL = 6 fm. While
appealingly simple, in this approach the state of interest,|ππ(p≈ 2π/L〉, is in fact the third lowest
energy state that will contribute to the Green’s function being computed: both the vacuum (for
I = 0 and thep≈ 0 π−π state will have lower energy. Extracting the decay matrix element from
such a three-exponential description of this Green’s function time dependence will be difficult.
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A second method, which results in theπ−π state possessing the lowest energy of all allowed
states, gives the initial kaon a non-zero 3-momentum. The two final pions must also carry this
momentum. The lowest energyπ−π state with~p 6= 0 will contain one pion which is nearly at
rest and a second which carries the kaon momentum. An energy conserving decay will result if the
kaon and one final pion carry 740 MeV of momentum. For a 3.5 fm box (too small to avoid large
finite volume corrections at the physical pion mass) the kaon and pion momenta would need to be
≈ 2·2π/L. Such large momentum amplitudes are expected to be noisy and difficult to compute.

This approach with a non-zero center (cm) of mass momentum has been explored theoreti-
cally [7, 8] and a first calculation shows encouraging results [9]. Since the vacuum cannot carry
momentum, the lowest energy state which contributes to such non-zero cm momentum correlators
will be theπ−π state of interest, even forI = 0. This approach deserves further study.

A third approach, which is the topic of the remainder of this article, is the use of boundary
conditions to eliminate thep≈ 0,π−π state. There are two techniques of interest. The first, which
can be applied to only theI = 2, π−π state, imposes anti-periodic boundary conditions on one of
the two flavors of light quarks making up the pions. This use of twisted boundary conditions with a
twist angleθ = π was introduced in Ref. [10] where they were called H-parity boundary conditions.
For the case of∆I = 3/2 decay, theπ−π final state will haveI = 2 and isospin symmetry can be
used to relate the matrix element of interest to a matrix element involving the|π+π+〉 state. With
H-parity boundary conditions, theπ+ meson will obey anti-periodic boundary conditions forcing
the pions in aπ+−π+ state with zero cm mass momentum to have a relative momentum of±π/L
in the direction orthogonal to the 2-d face on which the boundary conditions are applied. Since
this π+ −π+ state is the uniqueπ−π state with charge 2, the use of isospin breaking boundary
conditions does not lead to unwanted mixing of theI = 0 andI = 2 final states. Finally because all
π−π intermediate states must contain the valence quarks on which the boundary conditions have
been imposed, such H-parity boundary conditions can be imposed on only the valence quarks, using
a lattice ensemble generated with normal boundary conditions [11]. This is an attractive method to
compute the∆I = 3/2 kaon decay amplitude [12, 13].

A second type of boundary condition which can be imposed to insure that the final-state pions
carry non-zero momentum is G-parity boundary conditions [14]. Since all three pions are odd
under G-parity, these boundary conditions imply that each pion must havepi ≈ ±π/L when these
boundary conditions are imposed on the face perpendicular to theith direction. We now discuss
these boundary conditions in more detail.

2. G-parity boundary conditions for the pions

Recall that the G-parity transformation composes the charge conjugation operator with an
isospin rotation about they-direction. This transformation commutes with the three generators of
isospin and changes the sign of an iso-triplet whose third component, in our case theπ0, is charge
conjugation even. On the level of the quark fields creatingu andd quarks,(u,d) G-parity has the
following action:

G

(
u
d

)
G−1 =

(
CdT

−CuT

)
(2.1)
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whereC is the 4× 4 charge conjugation matrix which obeysCγµC−1 = −(γµ)T. Here and in
Eq. 2.1 above, the superscriptT indicates the transpose of a 4×4 and a 1×4 matrix respectively.
Such G-parity boundary conditions are ideal for our problem, respecting isospin symmetry while
yielding a lowest energy state of the two pions of the form:

Eππ≈
√

n
(π

L

)2
+m2

π. (2.2)

wheren= 0, 1, 2, 3 is the number of spatial boundaries on which the G-parity condition is imposed.
The appearance ofπ/L rather than 2π/L means that smaller energies are accessible.

Two difficulties must be overcome when implementing these boundary conditions. First the
gauge links that cross a boundary across which G-parity is imposed connect quark fields that trans-
form as SU(3) color triplets and anti-triplets. Thus, these links must transform under a gauge trans-
formation V(x) asUµ(x)→ V(x)Uµ(x)V(x+(1−L)êµ)T assuming that the sitex is adjacent to a
boundary which the linkUµ(x)crosses and thatL is the lattice size in theµ direction. This modified
transformation law requires a modified gauge action for all plaquettes which straddle this boundary.
For x andµ as above andν 6= µ we must use tr

(
Uµ(x)Uν(x+(1−L)êµ )∗Uµ(x+ êν )−1Uν(x)−1

)
.

Of course, the required change in the gauge action can be made and the resulting theory will still be
translationally invariant provided the translation operation is generalized to include replacing some
gauge links with their complex conjugate. This altered gauge action requires that a new ensemble
of gauge field be generated for each assignment of G-parity boundary conditions.

The second complexity is the presence of charge conjugation in the definition of G-parity.
Typically a Dirac operator that includes such a charge conjugation will be represented by a path
integral which evaluates to Pfaffian [15] rather than a more familiar determinant. However, for our
two-flavor case there is no direct coupling between a Grassmann integration variable and itself. For
example,u couples tod which then couples to−u as one traverses the lattice twice in a direction
perpendicular to a face across which G-parity conditions are imposed. Thus, we can view theu
quark as a Grassmann variable defined on a doubled volume where theu degree of freedom on the
extention of the original volume actually equalsd. The result is a standard theory of a single flavor
of quark obeying anti-periodic boundary conditions on a doubled lattice volume. While this pre-
vents the second quark from being represented by a simple change of anNf factor appearing in the
evolution algorithm from 1 to 2, the only real cost is a factor of two in the lattice volume that must
be studied. This added factor of two cost remains as G-parity is imposed in additional directions.
However, the resulting geometry becomes more complex than anL× L× 2L three-volume with
simple boundary conditions relating the values of the Grassmannu variable on opposite faces.

Thus, G-parity boundary conditions can be imposed on theu andd quarks with no difficulty
beyond the doubled space-time volume. Initial numerical simulations have uncovered no serious
problems beyond enhanced finite-volume effects that come from the possible binding of an isolated
quark to its own, distant, charge-conjugate image.

3. G-parity boundary conditions for the kaon

However, we must now decide how to treat the strange quark. The imposition of charge
conjugation boundary conditions on the gauge field implies that the strange quark cannot obey

4



P
o
S
(
L
A
T
2
0
0
9
)
2
5
5

G parity boundary conditions and∆I = 1/2, K → ππdecays Norman Christ

standard periodic or anti-periodic boundary conditions. There are two natural options to consider.
The strange quark could obey charge-conjugate boundary conditions. Alternatively the strange
quark could be made part of an artificial pair of degenerate quarks which transform as an isospin
doublet and obey G-parity boundary conditions. We consider each of these possibilities in turn.

Let us first impose C boundary conditions on a single species of strange quark. Begin with
the standard Grassmann action for the strange quark and then rewrite one half of that action by
reversing the order of thesandsfields:

s/Ds=
1
2

(
sT s

)
·

(
0 −/DT

/D 0

)
·

(
s
sT

)
=

1
2

ΨT ·

(
0 −/DT

/D 0

)
·Ψ where Ψ =

(
s
sT

)
. (3.1)

The standard boundary conditions appear as off-diagonal terms in the Dirac operator/D. We can
change these boundary conditions to charge conjugation boundary condition by removing this off-
diagonal term from/D and putting it into the diagonal blocks labeled as zero in Eq. 3.1. If the Dirac
operator without this diagonal term is written as/D ′ this change in boundary conditions will result
in a new action which can be written schematically as:

ΨT ·




[
0 ∆

−∆T 0

]
−/D ′T

/D ′

[
0 ∆′

−∆′T 0

]




·Ψ → Θ ·




[
0 ∆

−∆T 0

]
−/D ′T

/D ′

[
0 ∆′

−∆′T 0

]




·Θ. (3.2)

where the off-diagonal term∆ implements the coupling ofs(x,y,z= L−1, t) andsT(x,y,z= 0, t)
for the case of charge conjugate boundary conditions in thez-direction and a lattice withL sites in
that direction. Similarly∆′ connectssT(x,y,z= L−1, t) ands(x,y,z= 0, t).

The operator on the left side of the expression 3.2 is the desired Dirac operator with charge con-
jugation boundary conditions. Grassmann integrals with this action and the integrandΨ(x)Ψ(y)T

will give the inverse of the Dirac operator obeying these boundary conditions times the Pfaffian
of that operator. A practical way to evaluate that Pfaffian is indicated by the term on the right of
Eq. 3.2 where the number of independent fermion fields has been doubled so that the single fieldΨ
has been replaced by two fieldsΘ andΘ. This second action is entirely standard and would yield
a normal determinant, the square of the Pfaffian of interest. The resulting Dirac operator is defined
in a volume doubled in thez-direction and obeying periodic boundary conditions in that doubled
direction. Using the usual rational hybrid Monte Carlo method, we could easily perform a dynam-
ical simulation using the square root of this usual determinant and recover the desired Pfaffian. If
domain wall fermions are used with non-zero fermion mass, this determinant is guaranteed to be
positive so its square root is well defined. Given the connectivity of the gauge field integration
volume, we can then choose a consistent sign for this square root which will be valid throughout
that integration volume.

While it is encouraging that charge conjugation boundary conditions are practical to imple-
ment, they will not solve our problem. For example, aK0 meson, created from these strange
and light quarks, which is an eigenstate under translation byL in thez-direction will have the from
(sd± isu)/

√
2 where, from the perspective of the doubled lattice volume in thez-direction, the left-

hand term describes the particle for 0≤ z< L and the right-hand term applies whenL ≤ z< 2L.
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Unfortunately, under this translation byL, these states have eigenvalue±i and therefore carry mo-
mentum±π/2L so that a momentum conserving 2 pion decay is not possible. This should be
expected sinces(x) is even when translated in thez-direction by 2L while the light quark field is
odd, implying that the K meson will satisfy anti-periodic boundary conditions in this expanded 2L
volume and carry momentum±π/2L.

Note that the odd mixture of particles making up the K meson does not create a problem. By
using a weak operator with the correct particle content, we can insure that only the physicalsdpart
of the initial state will contribute. The effect of the unusual mixture in this initial state is only on
its normalization, introducing a factor of 1/

√
2 which can be easily be removed. In the doubled-

volume language, such a physically correct choice for the weak operator must involve fields in only
one half of the doubled volume which are therefore not translationally invariant so that conservation
of momentum must be imposed by the (here impossible) choice of initial and final states.

The second alternative of introducing a fictitious iso-doublet which is made up of the strange
quark and a second “charm” quark,(c,s) avoids the non-zero momentum problem discovered
above. Now both quarks in a generalized initial kaon state will change sign under translation
through 2L so a state with zero momentum becomes possible. The ground state which contains the
desiredsdcomponent will be

|K0〉=
1√
2

(sd+cu) . (3.3)

This state is translationally invariant and consistent with the boundary conditions permitting it to
carry zero momentum as required.

With this choice of boundary conditions for the strange quark we have effectively doubled the
number of flavors in the strange quark sector. Directly using the determinant of this doubled Dirac
operator as the weight in the QCD path integral would be incorrect because QCD has one not two
flavors of strange quark. Apparently the best solution to this problem is to use the square root of
this determinant. This square root will correspond to the correct number of flavors but will add
non-locality since such a square root cannot be realized by a local Grassmann path integral. Of
course, in contrast with the rooting used with staggered fermions, any effects of this non-locality
will disappear in the limit of large volume. The Dirac operator in question differs from the doubled
Dirac operator obeying charge conjugation boundary conditions on the right side of Eq. 3.2 by
boundary terms and the determinant of this doubled operator obeying charge conjugation boundary
conditions is the square of a positive Pfaffian which is appropriately local.

One might also worry that taking such a square root introduces a miss-match between the
treatment of the valence and sea quarks. Again such non-unitary effects are expected to be expo-
nentially suppressed for the case of single-particle states such as our K meson in which there is no
mixing between the valence and sea quarks [11].1

1It is interesting to note that this situation is very similar to the use of a superposition of propagators obeying periodic
and anti-periodic boundary conditions in the time direction, often done to reduce finite volume effects. The eigenvectors
of the Dirac operator defined on the doubled lattice divide into states either periodic and anti-periodic under translation
through the original time extentT . Thus, the determinant of the Dirac operator defined on the doubled lattice is the
product of the determinants of the Dirac operators defined on the original lattice obeying periodic and anti-periodic
boundary conditions. Using the correct number of flavors would require taking the square root of this determinant which
is then also not quite a perfect square.
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4. Conclusions

The use of G-parity boundary conditions for the up and down quarks and for an iso-doublet
made of degenerate strange and fictitious charm quarks allows an accurate description ofK → ππ
decays in which the finte-volume energy of the two-pion final state is quantized and the unphysical
state with approximately zero relative momentum forbidden. This approach is computationally
demanding, requiring a new set of gauge configurations for each choice of boundary conditions.
However, for a computationally difficult problem such as posed by theπ−π state withI = 0, the
generation of the gauge configurations may not be the dominant cost and this approach may yield
better-controlled errors than the competing method of using a 740 MeV center of mass momentum.
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