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1. Introduction

We determineFK/Fπ in QCD through a series of dynamical lattice calculations such that all the
sources of systematic uncertainty are properly taken into account [1]. We useNf = 2+1 dynamical
quarks, with a single quark whose mass is close to the physical strange quark mass (ms≃mphys

s ),
and two degenerate flavours of light quarks heavier than in the real world u and d quarks, but
with masses varying trough a range that allows a controlled extrapolation to thephysical point.
Concerning finite volume effects, the spatial sizeL is large enough so that the values ofFK/Fπ in
our ensembles can be corrected for small finite-volume effects. We simulate at three different
values ofβ to have full control over the continuum extrapolation.

2. Simulation and analysis details

Here we will not give any details about our actions for the gauge and fermion fields, or about
the algorithms used for the simulation. The interested reader should consult [2].

To set the scale and adjust the quark masses, we useaMπ , aMK and eitheraMΞ or aMΩ (to
estimate the systematics, as we will see). We extrapolate for each value of the lattice spacing the
valuesaMπ ,aMK ,aMΞ to the point where any two of the ratios agree with the experimental values.
We subtract electromagnetic and isosping breaking effects to the experimental values of the masses:
we useMphys

π = 135MeV,Mphys
K = 495MeV andMphys

Ξ = 1318MeV with an error of a few MeV,
according to [3].

Regardingmud, we have pion masses in the range 190−460MeV. FK/Fπ is measured with
the valence quark masses equal to the sea quark masses (no partial quenching).

The same dataset was successfully used to determine the light hadron spectrum [4].

3. Treatment of the theoretical errors

3.1 Extrapolation to the physical mass point

We simulate with a strange quark mass already close to its physical value, but this is not the
case for the light quarks. Thus our values ofFK/Fπ need an extrapolation to the physical point.
There are three possible guides for this extrapolation:SU(3) chiral perturbation theory, heavy kaon
SU(2) chiral perturbation theory, and Taylor fits.

For the case ofSU(3) chiral perturbation theory we use the expression for the ratio at NLO
as a function of the measured pion and kaon masses. It is important to note here that the apparent
convergence of Chiral perturbation theory is a statement that depends both on the observable and
the statistical accuracy of the data. With our data, the ratioFK/Fπ is well described by the NLO
expression, but this does not mean that NLO expressions can be used ingeneral to describe others
quantities (see [5]). The ratioFK/Fπ is probably a benevolent quantity as chiral logs inFπ andFK

cancel in part.

SU(2) chiral perturbation theory [6] and its heavy kaon variant [7] determinesthe functional
dependence of the ratio of decay constants on pion mass. We find that the ratio of NLO expressions
from these two references describes well the data in our ensembles.
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Having data in the range 190MeV−460 MeV, it is natural to consider an expansion about a
regular point which encompasses both the lattice results and the physical point [4, 5]. The mass
dependence ofFK/Fπ in our ensemble and at the physical point is well described by a low order
polynomial inM2

π andM2
K .

Since all the three frameworks describe well our data, we will use all of them in our analysis,
and use the difference between them to estimate the systematic uncertainty.

3.2 Continuum limit

FK/Fπ is anSU(3)-flavor breaking ratio, so that cutoff effects must be proportional toms−

mud, that guided bySU(3) chiral perturbation theory we may substitute withM2
K −M2

π .

Cutoff effects are both theoretically (they partially cancel in the ratio) and inpractice small
numerically. In [2] we found that although our action is only formally improvedup to ordera,
these small cutoff effects seem to scale likea2 up to about 0.16 fm. Even if this is the case we
can not exclude the possibility of cutoff effects proportional toa. Thus we have considered the
following three options compatible with our data: no cutoff effects, and a flavor breaking term
proportional toa or a2.

3.3 Infinite volume limit

Stable states in a box with periodic boundary conditions have different masses and decay
constants than the corresponding states in infinite volume. The difference vanishes exponentially
fast with the mass of the lightest state in the box [8]. In our case, masses anddecay constants are
corrected with terms proportional to exp(−MπL). In our simulationsMπL>∼4 making finite volume
corrections small. Moreover the sign of leading correction inFπ andFK is the same, so that they
partially cancel in the ratio.

Within chiral perturbation theory, the 1-loop [9, 10] and 2-loop [11] corrections for the pion
and kaon decay constants are known, so we have decided to correct the values of our simulations
with the 2-loop expression before fitting the data. The 1-loop expression will be used to estimate
the systematic uncertainty due to finite volume corrections (see below).

Similarly, we also correct the meson masses [11].

4. Fitting strategy and treatment of theoretical errors

Our goal is to obtainFK/Fπ at the physical point, in the continuum and in infinite volume. To
this end we perform a global fit which simultaneously extrapolates or interpolatesM2

π → M2
π |phys,

M2
K → M2

K |phys anda→ 0, after the data have been corrected for very small finite volume effects
using the two-loop chiral perturbation theory results discussed above. To assess the various sys-
tematic uncertainties associated with our analysis, we perform a large numberof alternative fits.

Excited states contribute to the correlators, so to estimate their effect, we choose 18 different
time intervals dominated by the ground state. The difference between masses and decay constants
coming from different time intervals are used to estimate the uncertainty associated with excited
states.

Scale setting systematic uncertainty is estimated by usingMπ , MK and eitherMΞ or MΩ.
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The chiral extrapolation systematic error is estimated in two ways. First we consider two
different ranges of pion masses for the fits: 190− 350MeV and 190− 460MeV. Second, we
consider a total of 7 different functional forms to extrapolate to the physical point. 3 of them
come from the NLOSU(3) chiral perturbation expression: the ratio of decay constants (cancelling
terms proportional toL4), a NLO expansion of the ratio and a similar NLO expansion but for the
inverse ratioFπ/FK . 2 functional forms come from theSU(2) chiral perturbation theory expression:
the expanded ratio of decay constants, and a similar expression but forFπ/FK . The last 2 forms
correspond to a Taylor fit forFK/Fπ , and a Taylor fit forFπ/FK . It is important to note that the
difference between these 7 functional forms provides an estimate of both higher order contributions
within a concrete framework (e.g NNLO terms inSU(3) chiral perturbation theory), and systematic
bias coming from a particular framework.

As discussed above, cutoff effects are parametrised in three different ways: we consider fits
with and withoutO(a2) andO(a) corrections, as described in Sec. 3.2.

Following this procedure we have 18× 2× 2× 7× 3 = 1512 global fits. One of the 1512
fits (corresponding to a specific choice for the time intervals used in fitting the correlators, scale
setting, pion mass range, . . . ) can be seen in (Fig. 1a). We emphasize thattheχ2 per d.o.f. for our
correlated fits are close to one.

Although all these methods seem to describe well our data, not all of them doit in the same
way, so we weight with the fit quality the central value of each fit. These 1512 weighted values
can be used to construct a distribution, whose median is an estimate of the typical result of our
analysis, therefore our desired final result (see fig. 1b). The width of the distribution is a measure
of the systematic error of our analysis, thus we take the 16-th/84-th percentiles as an estimate of
the systematic error of our computation.

Finite volume effects are treated separately because we know a priori thatthe two-loop ex-
pressions of [11] are the most accurate expressions available and theydescribe well these effects in
our data. To estimate the error associated with the finite volume effects, we repeat the full analysis
using the 1 loop expression to correct the ratioFK/Fπ and we also repeat the full analysis correct-
ing only the value ofFπ (this can be seen as an upper bound to the real correction inFK/Fπ ). The
weighted (with the quality of the fit) standard deviation of these three values is used as an estima-
tion of the uncertainty due to finite volume effect, and added to our systematic error by quadratures
to produce the final systematic error.

To determine the statistical error, the whole procedure is bootstrapped with 2000 samples, and
the standard deviations of the 2000 medians used as our estimate of the statistical error. Our final
error is computed as the sum by quadratures of the total systematic and statistical errors.

5. Results

Our final result for the ratio of decay constants is

FK

Fπ

∣

∣

∣

∣

phys
= 1.192(7)stat(6)syst or

Fπ

FK

∣

∣

∣

∣

phys
= 0.839(5)stat(4)syst (5.1)

at the physical point, where all sources of systematic error have been included.
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(a) Chiral extrapolation of the lattice data to the physi-
cal point for a particular choice of time interval and mass
cut (Mπ < 460MeV in this case). Here we use a Taylor
ansatze with no cutoff effects. Thems dependence has
been subtracted to plot the data as a function only ofMπ .
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(b) Distribution of values ofFK/Fπ . The large background
distribution (yellow) represents the values ofFK/Fπ ob-
tained with different extrapolation formulas, pion mass
cuts, parameterization of cutoff effects, time intervals and
different methods to set the scale. Also shown is the fi-
nal error interval (dashed lines) and the final value (black
solid vertical line).

Figure 1: And example of mass extrapolation and the distribution of fits used to obtain the final
result and systematic error.

Figure 2a shows our final result compared with the determination ofFK/Fπ from other dynam-
ical lattice computations. There are twoNf = 2 computations by JLQCD [13] and ETM [14]. With
2+ 1 fermion flavours, we have a number of results obtained using MILC configurations: MILC
[3, 15], NPLQCD [16], HPQCD/UKQCD [17] and Aubin et al. [18]. Theresults by RBC/UKQCD
[7] and PACS-CS [19] were also obtained withNf = 2+1 simulations but with different configu-
rations. It is worth noting that these results show a good overall consistency when one excludes the
outlier point of [13].

6. Contributions to the systematic error

Having estimated the total systematic error, it is interesting to decompose it into its individual
contributions. To quantify these contributions, we construct a distribution for each of the possible
alternative procedures corresponding to the source of theoretical error under investigation. These
distributions are constructed by varying over all of the other procedures and weighing the results
by the total fit quality. Then, we take the weighted standard deviations of the medians of these
distributions as an estimate of the systematic uncertainty associated with the source of error under
consideration.

Table (2b) shows the estimation of the different sources of systematic error in our computation.
Even having pion masses down to 190 MeV, the chiral extrapolation remains the main source of
systematic error. This error is broken in two parts by changing the fit range, and using different
expressions to extrapolate the data. In the Fig. 3 we can see how fits corresponding to different
pion mass cuts, and different functional forms contribute to the final distribution of values. The
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(a) Comparison of recent lattice computations of
FK/Fπ .

Source of systematic error error onFK/Fπ

Chiral Extrapolation:
- Functional form 3.3×10−3

- Pion mass range 3.0×10−3

Continuum extrapolation 3.3×10−3

Excited states 1.9×10−3

Scale setting 1.0×10−3

Finite volume 6.2×10−4

(b) Breakdown of the total systematic error onFK/Fπ
into its various components, in order of decreasing im-
portance.

Figure 2: In the figure, we can see a comparison between our result andrecent unquenched com-
putations ofFK/Fπ . The table shows, in order of importance, the different sources of systematic
error.
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(a) Final distribution of values and the contribution to this
corresponding to different pion mass cuts.
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(b) Final distribution of values and the contribution to this
corresponding to different functional forms.

Figure 3: Analysis of chiral extrapolation error.

medians of the small constituent distributions are used to compute the error associated with each
source of error, as was mentioned before.

The next source of systematic error in importance are cutoff effects. Aswas commented
earlier, we have three possible parametrizations for the cutoff effects: no cutoff effects at all, a
flavor breaking term proportional toa, and a flavor breaking term proportional toa2. In Fig. 4a the
corresponding distributions are shown. In the same way Fig. 5a shows thecontributions coming
from the two possibilities for setting the scale.

The two remaining sources of theoretical error deserve a separate comment. First, the con-
tamination with excited states is studied by using a total of 18 different fitting ranges for the cor-
relators, corresponding totmin/a = 5 or 6, forβ = 3.3; 7, 8 or 9, forβ = 3.57; 10, 11 or 12 for
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(a) Final distribution of values and the contribution to this
corresponding to different cutoff effects.
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(b) Final distribution of values and the contribution to this
corresponding to two different fitting ranges (of the 18
possibilities). The total area of the distributions have been
rescaled to make them visible.

Figure 4: Distributions with its contributions coming from different sources of theoretical error.
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(a) Final distribution of values and the contribution to this
corresponding to different scale settings.
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(b) Final distribution of values, compared with the dis-
tributions corresponding to a different (1-loop and upper
bound) finite volume correction.

Figure 5: Distributions with its contributions coming from different sources of theoretical error.

β = 3.7. In Fig. 4b we can see the final distribution compared with the distributions corresponding
to tmin/a = 5,7,10 andtmin/a = 6,9,12. These distributions have been rescaled (so that they add
to the total area of our final distribution), to make the small distributions more visible.

Second, only the 2-loop finite volume corrections are included in the 1512 fitsused to deter-
mine the final central value, because we do not want to bias this value with the1-loop contributions,
that are, a priori, less accurate than the 2-loop corrections. To estimate theuncertainty associated
with the subtraction of finite volume effects, we repeated the full analysis with 1-loop finite vol-
ume corrections and with an upper bound to the correction, computed by including only the 2-loop
correction toFπ . Our final distribution of values with these two alternatives are plotted in Fig. 5b.
The error associated with the finite volume effects is computed as the weighted (by fit quality)
standard deviation of the medians of these three distributions, and added byquadratures to the 68%
confidence interval of our final distribution to produce the final systematicerror.
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One final comment about the procedure to obtain the final systematic error.The addition of
different procedures to construct the final distribution only can increase the systematic error. For
example in figure (3b) we can clearly see that droppinganyof the procedures to extrapolate to the
physical point (for example not usingSU(3) fits), gives a final value well in our final error band, but
a smallersystematic error. This general statement remains true for the other sources of systematic
error.
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