PROCEEDINGS

OF SCIENCE

Simulations of supersymmetric Yang-Mills theory

K. Demmouche & F. Farchioni 2, A. Ferling 2, I. Montvay °, G. Miinster *, E.E. Scholz ¢,

J. Wuilloud 2
aUniversitat Minster, Wilhelm-Klemm-Strasse 9, D-4814%8ér, Germany

bDeutsches Elektronen-Synchrotron DESY, Notkestr. 82602 Hamburg, Germany
®Fermi National Accelerator Laboratory, Batavia, IL 60510SA
E-mail: nunst eg@ini - nuenst er. de

Results of a numerical simulation concerning the low-hyépegctrum of four-dimensional” = 1
SU(2) Supersymmetric Yang-Mills (SYM) theory on the lagtiwith light dynamical gluinos are
reported. We use the tree-level Symanzik improved gaugereahd Wilson fermions with stout
smearing of the gauge links in the Wilson-Dirac operatore Tanfigurations are produced with
the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) aliglom. We performed simulations
on lattices up to a size of 2448 atf3 = 1.6. Using QCD units with the Sommer scale being
set torg = 0.5fm, the lattice spacing is aboat~ 0.09fm, and the spatial extent of the lattice
corresponds to.2 fm to control finite size effects. At the lightest simulatgidino mass our
results indicate a mass for the lightest gluino-glue botatswhich is considerably heavier than
the values obtained for its possible superpartners. Whethprmultiplets are formed remains to
be studied in upcoming simulations.
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1. Introduction

Supersymmetric theories have received increasing interetementary particle physics. The
supersymmetric extension of the Standard Model with= 1 supercharge and other models be-
yond the Standard Model have supersymmetry (SUSY) as antegdsegredient.

The minimal supersymmetric extension of the(8k) gauge theory describing self-interactions
of gauge fieldA\2, corresponding to thgluons(g), is given by the /" = 1 Supersymmetric Yang-
Mills (SYM) theory. The supersymmetric partners of the gisiare described by spin-1/2 Ma-
jorana fermion fields\, (a = 1...N2 — 1), the gluinos (§). Compatibility of SUSY with gauge
invariance requires that the gluinos transform in the adlj@presentation of the gauge group. This
theory describes the interactions between gluons andaguithe Lagrangian of SYM theory in
the continuum, including a SUSY breaking mass term, reads

L= SR8FW 1 X0 (0 00) - TAme, @)

The mass term here introducesdit breakingof supersymmetry.

In the low-energy regime, where the interactions beconungirarguments based on the low-
energy effective Lagrangian approach [1, 2] predict theuoence of non-perturbative dynamics
like confinement and spontaneous chiral symmetry breakiiiSY gauge theories. Confinement
is realised by colourless bound states. In the case wherkaghéerm in Eqg. (1.1) is switched
off (mg = 0), the anomalous global chiral symmetry 1), is present. The anomaly does not
break the global chiral symmetry completely and a discrebgsupZyy, remains. As in the case
of QCD, the discrete chiral symmetry is expected to be speatasly broken t&, by the non-
vanishing value of the gluino condensd#eA ). The consequence of this spontaneous breaking is
the existence di; degenerate ground states with different orientationsefjthino condensate.

Another interesting aspect of SYM is its equivalence to QCithwa single quark flavour
(N+ =1 QCD) in the limit of a large number of colourdl{ — «), where the Majorana spinor
is replaced by the single Dirac spinor [3]. The latter modedlso object of investigation by our
collaboration [4].

A lattice formulation of SYM suitable for numerical simuats, employing Wilson fermions,
has been proposed by Curci and Veneziano [5]. First nonxieative investigations of SYM on
the lattice using this formulation have been performed lgyDESY-Minster-Roma collaboration;
for a review see Ref. [6] and references [7, 8, 9, 10, 11]. Sisfoken explicitly by the lattice
discretisation. In the Wilson approach the mass term antMison-term break both chirality and
SUSY. Both symmetries are expected to be recovered in theéncom limit by tuning the relevant
bare mass term to its critical value corresponding to a reasgjluino iy = 0), and the gauge
coupling towards zero.

In recent years, simulations o#” = 1 SYM on the lattice using Ginsparg-Wilson fermions
with good chiral properties, such as domain wall fermioresjenbeen initiated [12, 13, 14]. For
large lattice volumes and small lattice spacings theseldtations require, however, a significantly
larger amount of computing resources than the Wilson foatiart. The gain of no need for tuning
the position of the zero gluino mass point does not compensatfar the advantage of Wilson
fermions.
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Here we report on recent work continuing the project of theS¥EBunster collaboration for
the simulation of /" = 1 SU(2) SYM. We present results in the light of the newly used TS-PHMC
algorithm and improved actions.

The most important characteristics of the theory is the nsasstrum of bound states, for
which the low-energy effective theories predict a reorgation of the masses in two massive Wess-
Zumino supermultiplets at the SUSY point [1, 2], where thi kreaking vanishes. The introduc-
tion of a small gluino mass removes the mass degeneracy @etive supermultiplet members.

2. Latticeformulation of .4 =1 SYM theory

For the gauge fields we employ three-level improved SymanZi(Sym) action. The gluinos
are represented by Majorana fermiok&in the adjoint representation. The fermion part of the
Curci-Veneziano action, describing the gluinos, is givgn b

%VZ%ZX(X) ZZ (X4 BV () (14 y)A () + A (V] () (L= y)A (x+ )], (2.1)

wherex is the bare hopping parameter which encodes the bare gluasskm= (2mgo+8) 1. The
real orthogonal matriced, (x) are the gauge links in the adjoint representation.

The linksUy ;, in the fermion action can be replaced $tputsmeared links [15]. This has
the advantage that short ranggpological defect®f the gauge field and the corresponding small
eigenvalues of the fermion matrix are removed. We preferetepkthe action well localised and
hence only perform a single stout-smearing step.

Similarly to QCD, the mass term proportional rtgo breaks chirality. In the present case it
also breaks the supersymmetry. A massless gluiges 0, is obtained by tuning the relevant bare
mass term to its critical valuerg — mor) or equivalentlyk — Ke;.

The fermion action can be rewritten in term of an antisymioetratrix M = €'Q, whereQ is
the non-hermitian fermion matrix or lattice Wilson-Dirapeyator for Dirac fermions in the adjoint
representation, and is the charge conjugation matrix in the spinorial represtion. Integration
of the fermionic variables yields the Pfaffian Mf whose absolute value equals the square root of
the fermion determinant. Effectively, this corresponds ftavour numbeN; = % In the Wilson
setup the Pfaffian can become negative even for positivagimasses.

In our numerical simulations we include the dynamics of théng by the Two-Step Polyno-
mial Hybrid Monte Carlo (TS-PHMC) [16] algorithm with flavomumberN;s = % This has the
consequence that only the absolute value of the Pfaffiakéstento account in the updating of the
gauge field configuration. The sign of the Pfaffian has to blidedl in a reweighting step when
calculating expectation values. It can be shown that the sighe Pfaffian is equal to the sign of
the product of half of the doubly degenerate negative re@reialues of). For positive gluino
masses sufficiently far away from zero a negative sign of tafién rarely occurs in the updating
sequence and therefore a sign problem does not show up.

The TS-PHMC algorithm turned out to be very efficient in proidg short autocorrelations
among the gauge configurations. For instance, in the stoatged runs on a 3448 lattice the
integrated autocorrelation of the average plaquette (wb&ongs to the worst quantities from the
point of view of autocorrelations) did always satigf§}* < 10.
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The values of the gauge coupling paramégean be fixed by investigating the static potential
of an external fundamental charge and extracting the Soracade parametep/a[17]. Note that
in analogy with QCD, we set the value f by definition toro = 0.5fm. In this way we can use
familiar QCD units for physical dimensionful quantities.

The TS-PHMC runs were done on®.&2 and 24 - 48 lattices a3 = 1.6 at various values of
the hopping parameter. On the 24 - 48 lattice four points have been simulated with stout-links
The lattice spacing amountsaa~ 0.09fm. The lattice extension~ 2.1fm is expected to be large
enough to allow control over finite volume effects on the libstate masses.

The dimensionless quantityl, = (romy)2, wheremy; is the pion mass in the corresponding
theory with two Dirac fermions in the adjoint representatis expected to be proportional to the
gluino mass (see below), and can be considered to be a medisure

An issue in lattice simulation is the lightness of the dynaahguarks which leads to slowing
down of the update algorithms. With the new TS-PHMC algonitthe lightest adjoint pion mass
in our simulations was about 440 MeV. Simulations for snrajleino masses and/or finer lattice
spacings are going on presently.

3. Low-lying bound state spectrum

For the investigation of the low-lying bound state spectmieconcentrate on the projecting
operators employed for the construction of the low-energgrangians of [1] and [2]. These are
expected to dominate the dynamics of SYM at low energiesvidue experience on the field can
be found in [7] and [9]. We investigate spin-0 gluino-gluibitinear operators (adjoint mesons), a
spin-1/2 mixed gluino-glue operator and spin-0 gluebalrapors. In some cases smearing tech-
nigues such as APE [18] and Jacobi smearing [19] are appliedder to increase the overlap of
the lattice operator with the low-lying bound state.

The adjoint mesons are colourless composite states of wiwag with spin-parity © and 0.

In analogy to flavour singlet states in QCD we denote the foag’ and the lattes- fp, where the
prefix a stays for “adjoint”. The associated projecting operateestae gluino bilinear operators
Omes= AT A wherel = 5,1 respectively.

The resulting propagator consists of connected and dismed contributions. The exponen-
tial decay of the connected term defines the adjoint pion nmrass This quantity, even if not
associated to a physical state of SYM, can be used to cheasactiee gluino mass. Indeed, accord-
ing to arguments involving the OZI-approximation of SYMethadjoint pion mass is expected to
vanish for a massless gluino and the behaviofir, 0 mg can be assumed for light gluinos [1, 9].

For the positive parity glueball'Owe adopted the simplest interpolating operator built from
space-like plaquettes. In order to improve the signal wdiegpp\PE smearing with the variational
method [20].

Also here, as for the scalarfy, the gauge samples generated with stout links turn out to
generally give better results for the glueball masses.

The gluino-glueballsd-g) are spin% colour singlet states of a gluon and a gluino. They are
supposed to complete the Wess-Zumino supermultiplet cddifant mesons [1]. We adopt for this
state the lattice version of the gluino-glue operatayfHo A| [1], where the field-strength tensor
Fuv(X) is replaced by the clover-plaquette operdeg(x) [21, 9]. We apply APE smearing for the
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links and Jacobi smearing for the fermion fields in order ttnoise the signal-to-noise ratio and
to obtain an earlier plateau in the effective mass.

A vanishing gluino mass is a prerequisite for supersymmiattlye continuum limit. Therefore
the point corresponding to a massless gluino is of highastan lattice simulations of SYM. With
Wilson fermions this point must be located by tuning the hiegparameter. The subtracted gluino
mass can be determined in a direct way from the study oféa8idSY Ward-Identities (WIs) [21]
and, in an indirect way, from the vanishing of the adjointrpinass. Indeed, as mentioned above,
the pion mass squarddmy)? is expected to vanish linearly with the (renormalised) igiunass.
Both the WIs and adjoint pion mass methods give consistditha&®s of the critical hopping
parametekc, corresponding to vanishing gluino mass.

The masses of the lightest bound states of low-enefgy= 1 SYM determined in this work
are shown in Fig. 1. The massesasfy and the glueball from the unstout ensembles have a very
low signal-to-noise ratio and are not shown. The resultiseasinallest gluino mass are preliminary.

Spectrum of SU(2) Super-Yang-Mills on the Lattice
action: tISym (gauge) + Wilson (gauginos), Algorithm: TS-PHMC
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Figure 1: Low-lying bound state masses of = 1 SU(2) SYM as a function of the
adjoint pion mass squared (physical units).

The masses in Fig. 1 are multiplied by the Sommer scale pasarmed plotted as a function
of the squared adjoint pion mass. The lightest simulatediridpion mass is about 440 MeV in
our units. The vertical line in Fig. 1 highlights the masslgtuino limit where SUSY restoration
is expected up t@’(a) effects.

The bound state masses appear to be characterised by ademenrdence o(romy)2. The
gluino-glueball(§g) with a mass of about 1440 MeV (in our unit whege= 0.5fm) turns out to
be considerably heavier than the)’ with a mass of 810 MeV. Furthermore, the masses of the
scalar glueball and the scalar messify converge to a common point with the pseudoscalar near
the region where SUSY is expected. The behaviour of scadargsmpatible with mixing between
0" glueball andh- fo. The behaviour of masses suggests a lower supermultighiie thhe spin-1/2
candidate remains heavier up to the smallest simulatedghaass in this simulation. Whether this
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outcome is a discretisation artefact or a physical effectlaimed in [22], should become clear in
future studies at finer lattice spacings. As the data at sghatho mass are preliminary, it would
be premature to draw conclusions.

4. Spontaneous symmetry breaking

An important feature of the strong interaction dynamics ®i\5stheory is the spontaneous
breaking of the discrete chiral symmetry. The appearant¢emflegenerate ground states in case
of SU(2) gauge group was observed in [23] on a small {&) lattice by neglecting the sign of the
Pfaffian.

Recently we repeated this computation on a largef)(litice and also taking into account
the Pfaffian signs. The observed distribution of the gluiondensate is shown in Fig. 2.
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Figure 2: Distribution of the gluino condensatefit= 1.6, k = 0.158.

The distribution cannot be fitted with a single Gaussian,sbtwto-Gaussian fit shown on the
figure, corresponding to the two ground states, is reasen&tobm the difference of the positions
of the two peaks one can, in principle, determine the madeitf the gluino condensate. This
however requires the knowledge of renormalisation comstamd therefore is left for a future work.

5. Conclusion

In this work firstquantitativeresults of the low-energy spectrum .of° = 1 supersymmetric
Yang-Mills theory are obtained. Physical volumes largemtl2 fm have been simulated, which
is the volume usually required for spectrum studies indattjauge theory. The comparison of
masses on different volumes in otherwise same conditiovsale negligible finite size effects
at least for moderate gluino masses. We have collected thjatstics and have used efficient
dynamical algorithms such as TS-PHMC, which is suitabldift fermion masses. In addition,
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the supersymmetric Ward identities and other observai¥eghe confinement potential and the
gluino condensate have been investigated.

From the results of the mass spectrum the question of thaghluino and gluino-glueball
mass splitting remains open. It can only be answered bydugimulations allowing an extrapola-
tion to the continuum limit.
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