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1. Introduction

In the Standard Model, the flavor-changing neutral currentgssh — X¢ "1~ only occurs at
the one-loop level and is therefore sensitive to new phyditghe kinematical region where the
lepton invariant mass squared is far away from thecc-resonances, the dilepton invariant mass
spectrum and the forward-backward asymmetry can be phegisedicted using largen, expan-
sion, where the leading term is given by the partonic matérent of the effective Hamiltonian

AGE
V2
We neglect the CKM combinatiox Vi, and the operator basis is defined as in [1]. In [2] we

published the first analytic NNLL calculation of the high region of the matrix elements of the
operators

10
Hett = — VtZth'ZlCi(Il)Oi(N)- (1.1)

Op = (8w T%)(CLy*T%),  Oz=(Syucu)(CLy b)), (1.2)

which dominate the NNLL amplitude numerically. Earlier$baesults were only available analyt-
ically in the region of lowg? [3, 4]. Using equations of motion the NNLL matrix elementstioé
effective operators take the form

Qs

2
<3€+£7’Oi‘b>2-loops: - <E‘[> [Fim <O7>tree+ Fi(9)<09>tree] ) (1-3)
whereO; = e/g2my (S 0+ br)Fy, andOg = €/g2(S yub) 3 (IvH1).

2. Calculations
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Figure 1: Diagrams that have to be taken into account at ooderThe circle-crosses denote the possible
locations where the virtual photon is emitted (see text).

The diagrams contributing at ordeg are shown in Figure 1. We set, = 0 and define

o« e @2.1)

% and z:@,
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whereq is the momentum of the virtual photon. After reducing ocurtensor-like Feynman
integrals [5] the remaining scalar integrals can be furteduced to master integrals using integra-
tion by parts (IBP) identities [6]. Considering the reg®mn 4z, we expanded the master integrals
in zand kept the full analytic dependencesin ~

For power expanding Feynman integrals we use a combinafiomethod of regions [7] and
differential equation techniques [8, 9]: Consider a set of Feynman integrls .., |, depending on
the expansion parameteand related by a system of differential equations obtainedifferenti-
atingl, with respect ta and applying IBP identities:

d
B

whereg, contains simpler integrals which pose no serious problé&mpanding both sides of (2.2)
in g,zand Inz

lg = Z(Ié{;k)sizj(lnz)k, hap = Zh%’ieizj, Jo = Z(g Keizl(Inz)k (2.3)
i N

and inserting (2.3) into (2.2) we obtain algebraic equatifum the coefficients$ Ik

a7

0= (j+ DY+ (ks - ZZhGBI/BJI T glb, (2.4)
B

This enables us to recursively calculate higher powemsanice the leading powers are known. In
practice this means that we need tb(?eo) and sometimes also tmgi’o) as initial condition to (2.4).
These initial conditions can be computed using method dbnsg A non trivial check is provided
by the fact that the leading terms containing logarithmg cdin be calculated by both method of
regions and the recurrence relation (2.4).

The summation indeX in (2.3) can take integer or half-integer values, dependinghe
specific set of integralk,. In order to determine the possible powersaid Inz) we used the
algorithm described in [9]. A giveD-dimensional-loop Feynman integrdl(z) reads in Feynman
parameterization

yN-(L+1)D/2

N I ) N <
1(2) = (—1) (W) r(N-LD/2) [d K013 %) e e (29

whereU, F; andF, are polynomials irx,. Using Mellin-Barnes representation (2.5) can be cast
into the following form

. L .
_(_1\N ! N _ _
1(2) = (~1) <(4H)D/2> S [imdsfr( 9r(s+N—LD/2)
N
x / dVX8(1— Y xq)UN(LHED/2ESE meNHLD/2 (2.6)
n=1
By closing the integration contour oveto the right hand side the poles on the positive real axis

turn into powers oz If we apply the technique afector decomposition [10] to (2.6) we end up
with terms of the following form

Z/ dN-1 (l_ltAJ Bje—C; )Ulk (LH-)D/ZFlIsziISk N+LD/2 2.7)
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whereUy, Fix andF contain terms that are constantfinFrom (2.7) we can read off that the
poles insare located at:

- 1—|—I’H—Aj — BjE

n — CJ ’

(2.8)

wheren € Ng.
Additionally, the procedure described above allows us &huate the coefficients of the expan-
sion inznumerically which we used to again test the initial condisi@f the differential equations.

3. Reaults

In order to get accurate results we keep terms ug&o Our results agree with the previous
numerical calculation [11] within less than 1% differend®. demonstrate the convergence of the
power expansions, we show in Figure 2 the form factors defimédl.3) as functions o§, where
we include all orders up t#, 22 andz'°. We use as default value= 0.1 such that thec-threshold
is located as = 0.4. One sees from the figures that far away fromadthreshold, i.e. fos > 0.6,
the expansions for all form factors are well behaved.

The impact of our results on the perturbative part of the lafgepectrum [3]

1 dr (B — Xsl07)

RS = F(B— Xe& Vo) ds

(3.1)

is shown in Figure 3 (left), where we used the same paramasdrs[2]. The finite bremsstrahlung
corrections calculated in [4] are neglected. From Figurkef) (we conclude that fopu = my the
contributions of our results lead to corrections of the o@%— 15%. IntegratingR($) over the
high Sregion, we define

1
Reigh = /0 dSR(S) (3.2)

Figure 3 (right) shows the dependence of the perturbatikteop&iigh 0n the renormalization scale.
We obtain

Rhigh,pert= (0.43+0.01(pt)) x 107>, (3.3)

where we determined the error by varyipgoetween 2 GeV and 10 GeV. The corrections due to
our results lead to a decrease of the scale dependence to 2%.
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Figure 2: Real and imaginary parts of the form fact@rg’g) as functions o6."To demonstrate the conver-
gence of the expansion imwe included all orders up t, 22 andz! in the dotted, dashed and solid lines
respectively. We putt = m, and used the default valae= 0.1.
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Figure 3: Perturbative part oR(S) (left) andRyign (right) at NNLL. The solid lines represents the NNLL
result, whereas in the dotted lines the ordeicorrections to the matrix elements associated With are
switched off. In the left figure we uge = my,. See text for details.
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