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One of the major instrument for calculations in particle §iby is the operator product expan-
sion (OPE). The program of the OPE consists in factorizingrimutions which can be calculated
with perturbation theory from matrix elements which nedlezi an experimental determination or
non-perturbative methods. The perturbative calculatamasneaningful at an energy sc@evhich
is much bigger theiqcp, the energy scale at which non-perturbative effects bedomertant. In
the Wilsonian OPE, the observables are factorized usingadfcar factorization scalelf, where
Ngcp < AT < Q, and are expanded iflocp/Q. Consider a dimensionless observabiavhose
OPE is

61 (A")
QP

o =Cg'(Q A6 (A +Ct'(QA) T (1)
The C&’l are dimensionless Wilson coefficients containing contigms from momenta > Af
with perturbative expansions ims, and 95’}’1 = (0p1)w are non-perturbative matrix element with
mass dimensions 0 angl containing contributions frork < Af. Cng(Q, A" contain an infinite
series of terms(Af /Q)", modulo IF(Af /Q) terms, and this reflects the fact tig, only include
contributions from momentia> A. The hard scal€ is contained only in the Wilson coefficients.
The Wilsonian OPE provides a separation of momentum sdaléd, s difficult to define)\', retain
gauge symmetry and Lorentz invariance, and perturbativgpctations beyond one-loop are very
difficult. The calculations are easier in dimensional ragahtion and théMS renormalization
scheme preserves symmetries almost automatically. EQetmes

O1(H)

0 =Co(Q.1)B(k) +Co(QH) =

+..., )

wherep is the renormalization scale and bars are usedf®rquantities. InVIS theC; are simple
series inas. CiW(Q,/\f) andC?j(Q,u) are perturbatively related to each other, so Egs. (1) and (2)
are just the same OPE in two different schemes. The renaratialn scaleu in MS plays the role

of Af. This is precisely true for logarithmic contributions,n— InAf, and here the Wilsonian
picture of scale separation @ and 5. carries over: the Wilson coefficients contain powers of
In" 1 /Q and matrix elements powers of"lrpl//\QCD such that alju-dependence is finally canceled

in eq. (2). For a generic value of both Inu/Q and Inu /Aqcp can be big. The usual solution of
this problem is to resum all In/Q using renormalization group equations (RGE) so that theceho
Naocp S M < Q can be made and a convergent result is obtained.

The same is not true for power law dependences\bn The integrations in dimensional
regularization are carried out over all momenta and theraations ofMS allow C; to contain
some contributions from arbitrary small momenta, and QTheo have contributions from arbi-
trary large momenta. While this simplifies higher order catagions, it leads to factorial growth
in the perturbative coefficients. 1@, the dominant term in the coefficient @dis(11)/(4m)]" is
~ (u/Q)Pn! [2Bp/p]"Z at largen [1], for constantZ. In practice this sometimes leads to poor con-
vergence already at one or two loop order in QCD. This pooatiehis canceled by corresponding
instabilities ine_l, and is referred to as an ordpnnfrared renormalon iCo canceling against an
ultraviolet renormalon i, [2, 3, 4]. All these features are related to the fact thatNi& OPE
does not strictly separate momentum scales.
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In ref. [10] we have proposed a new method to deal with thisgagical behavior of the
MS Wilson coefficients. The renormalization scheme so obtiis called MSR. The new renor-
malization scheme is characterized by a cutoff scdlegt which the renormalon contribution is
subtracted, and an appropriate differential equation efngw coefficient with respect 8 The
solution of these equations allows a perturbative resutiomaf logs with a complete renormalon
cancellation.

The subtraction mechanism works as follows. Writing théeser

InCo(Q, 1 z an(1/Q)[ 75 E 3)

(470

with a,(1/Q) = zkzoanklnku/Q we define the MSR scheme by the series [10]

_ < py R pyad(p)

nCoQRK) = 3 {an(g)~gpan(R) f (argn
This definition cancels the ord@rrenormalon for large [5, 10, 11] due to the power dependence
of the subtracted term. It yields also the very simple refati

(4)

Co(Q.R 1) = Co(Q. 1) [Co(R )] ~®", 5)

which must be expanded order-by-orderoig{u) to remove the renormalon. Thus the coefficient
Co(Q,R, i) for the MSR scheme is obtained directly from #& result. Note thaﬂ:o(Q,Q u) =

to all orders. The appropriafeis obtained from th&1S OPE byp=dimension@; ) — dlmensmneo)
MSR preserves gauge invariance, Lorentz symmetry, andrtigisity of MS.

The appropriate values fd® are constrained by power counting and the structure of large
logs in the OPE. The power countirgy ~ /\QCD implies 6; ~ /\QCD, so for the matrix element
we needR= Ry ~ 1 2 Aocp (meaning a larger value where perturbation theory for th& Gl
converges), which minimizes (p/Aqcp) and In(u/R) terms in61(R, 1,Agcp). On the other
hand,Co(Q,R, ) has I{u/Q) and Inu/R) terms, and foR ~ Agcp no choice ofu avoids large
logs. ForR=R; ~ u ~ Q we can minimize the logs i€ (Q,R, i), but not in6;(R, 4, Agcp)-
When the OPE is carried out MS this problem is dealt with using @-RGE to sum large logs
betweenQ and/Agcp. For MSR we must us&-evolution, an RGE in th& variable [5], to sum
logs betweerR; andRy. The appropriate R-RGE is formulated with= KR andk ~ 1 to ensure
that there are no logs in the anomalous dimension. KTHependence is reduced order by order in
perturbation theory. We will take = 1 noting that the uncertainty from varyingis anyway well
captured by our method for the theory error analysis. SdC§@ndk = 1,

R INCH(Q.RR) = 7las(R )~ (5) ViaRlL (6)

wherey[as] = S_o W[as(R) /4m™ ! andy[ag] = T Wm[as(R) /4" are theMS andR anoma-
lous dimensions respectively. Eq. (6) can be combined withusualu-RGE

d
Hau INCo(Q,R, 1) = ylas(u)] (7)
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Figure 1: Perturbative results for the Ellis-Jaffe sum rule in the M&S, andMS schemes, at leading
order in 7/Q?. For all curves the one parameta, i fixed by data a@ ~ 5GeV.
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Figure2: Uncertainty estimates in the MSR scheme Mfslscheme for the Ellis-Jaffe sum rule at leading
order in Q2.

to resum ultraviolet (UV) logs. The fact that on the left haidk of eq. (6,7) only 1€ is present
ensures that one can move freely in flndRk plane and that the final result depends only on the
initial and final points on this plane. F& > Ry the solution of Eq. (6) is

CO(Q7R07RO) :CO(Q7 RlaRl)UR(Qa R17R0)UIJ(R17R0)7 (8)

whereU, is the usuaMS evolution factor andJr is the R-evolution obtained by integrating the
second term in egn (6).

1. TheEllisjaffesumrulein MSR

In previous papers we have applied the principles of R-évmiuo heavy quark masses and
other observables [5, 10]. Here we review the applicatiaimécEllis-Jaffe sum rule.

In MS the Ellis-Jaffe sum rule [6] for the proton in DIS with montem transfeQ is M1 (Q) =
[Ca(Q, 1) 85 + Co(Q, 1)&0/9] + 61(1)/Q?. Cgp are known at 3 loops [7]. The two leading or-
der terms are written so that both coefficients and matrimelds are separately-independent:
6s = ga/12+ ag/36 is given by the axial couplingg, = 1.2694 andag = 0.572 for the nucleon
and hyperon, whileg'is a Q independenMS matrix element.6; denotes all 1Q? power cor-
rections with their Wilson coefficients at tree level. TM& coefficients are affected by@= 2
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renormalon [8], which is removed in the MSR scheme. Eq. @9 = B, 0]
G(QRR) =G(QRIGRR] Y. (1.2)
With R-evolution the MSR OPE prediction is

M1(Q) = [Ca(Q,R1,Ri)UE(Q,R1,Ro) s (1.2)
+Co(Q, Ry, R1)UR(Q, R1, Ro)80/9] + 61(Ro, Ro) / Q%

Figures 1,2 show perturbative predictions for the EllieJaum rule at leading power in/Q?,
compared with proton data from Ref. [9]. We usg4GeV) = 0.2282, and the 4-looj with
4 flavors. In Fig. 1, we show order-by-order results for M8 scheme ap = Q, and for the
resummed MSR scheme wily = Q andRy = 0.9 GeV. We fixap = 0.141 so thaMS and MSR
both agree with the data f6 ~ 5GeV.MS agrees well with the data for lar@g but turns away at
Q <2 GeV and no longer converges. In contrast the MSR resulisativerge quickly and exhibit
excellent agreement with the data over a wide rang@'®f The NLL MSR result already has the
right curvature and, at NNLL and3\L the agreement fo® > 0.6 GeV improves. We also display
predictions in the RS scheme with subtraction seale- 1.0GeV from Fig.3d of Ref. [12], which
improve slightly over thé/S results, but may not be capturing the dominant power lgveddence
on the factorization scale. In Fig. 2 we show uncertainiestree loop results in thdS and MSR
schemes. The dashed red curve isNt® prediction, and the blue band estimates the higher-order
perturbative uncertainties varyingin the ranggu™"(Q) < u < 2Q. ForQ > 1.5GeV,uM"=Q/2,
while for Q < 1.5 GeV,u™" = 1.3Q/(1.1+ Q/(1GeV)). The red solid line is the MSR prediction,
the red band is the perturbative uncertainty from varyfadn the same range as was done for
in MS, and the green band estimates tH&34 power correction by varying, = 0.7 to 12 GeV.
Fig. 2 implies—0.01GeV? < 6;(Ro, Ry) < 0.01GeV? in MSR, which is a much smaller power
correction than the- 0.1 Ge\ estimate obtained from naive dimensional analysigis
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