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1. Introduction

The theoretical description of higher-twist correctionggCD is based on the Wilson Oper-
ator Product Expansion (OPE) and involves contributiona lafrge number of local operators. A
general formalism was developed by Bukhvostov, Frolovatag and Kuraev (BFLK) [1] for the
special class of so-called quasipartonic operators tledbaift of “plus” components of quark and
gluon fields. For each twist, the set of quasipartonic opesds closed under renormalization and
the renormalization group (RG) equation can be written inaanHtonian form that involves two-
particle “interaction” kernels, cf. Fig. 1a, that can be mgsed in terms of two-particle Casimir
operators of the collinear subgro®b(2, R) of the conformal group. In this formulation symme-
tries of the RG equations become explicit. Moreover, theesponding three-particle quantum-
mechanical problem turns out to be completely integrabteaflew important cases, and in fact
reduces to a Heisenberg spin chain [2], see [3, 4] for a resissvfurther references.

+ 4+ + - R - -
+ 4+ + - + + + + - +
a) b) C) d)

Figure1: Schematic structure of one-loop renormalization groupéisrin QCD

++ ++
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The goal of this study [5, 6] is to generalize the BFLK appto&e the situation where not
all contributing operators are quasipartonic, as it prdedse the case starting with twist four. On
this way, there are two complications. First, the number el (“particles”) is not conserved.
To one-loop accuracy, the mixing matrix of operators withiaer twist has a block-triangular
structure as the operators with less fields can mix with ooesaming more fields but not vice
versa, cf. Fig. 1c,d,e. Operators with the maximum possiblaber of fields for the given twist
are quasipartonic. Second, operators involving “minusd &ransverse” derivatives and/or field
components must be included. The problem is that trans\oeseatives generally do not have
good transformation properties with respect to$€2, R) group so that the conformal symmetry
becomes obscured.

The main new contribution of this work is the calculation bfexisting 2— 2 kernels of the
type shown in Fig. 1b and the-2 3 kernels corresponding to operator mixing of one “partbaiad

one “non-partonic” field in three-particle quasipartonfeaators, Fig. 1c. To this end we suggest
a new technique which bypasses the calculation of Feynnaguatns.

2. Conformal Operator Basis

In Ref. [5] we have constructed a complete basis in the setnysical operators of arbitrary
twist, i.e. operators non-vanishing on the equations ofianateOM). The evolution kernels cal-
culated in this basis are manifes®}(2, R) invariant which allows one to use powerful algebraic
methods to calculate their renormalization [6], bypassiaigulation of Feynman diagrams.
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Table 1: One-patrticle chiral quark operators with the lowest tstnd conformal spirj.

An essential part of our approach is going over to the spinanélism. In this way each
covariant four-vectok;, is mapped to a hermitian matri a Dirac (quark) spinog is written in
terms of two-component Weyl spinotg, and x?, and the gluon strength tensBy, is decom-
posed in chiral and antichiral symmetric tensaiigg and f_aﬁ which belong to(1,0) and(0,1)
representations of the Lorentz group.

The two independent light-cone directioms, andri,;, n?> = ii* = 0, can be parameterized in
terms of auxiliary spinors B

Naa = AgAa, Aaa = Ha Mg - (2.1)

The basis vectors in the transverse planéndi) can be chosen asa)\_a and A g, so that an
arbitrary four-vector can be described by two real lightecoordinateg andZ'and two complex
coordinatesv, w = w* in the transverse plang, = (Xo,X1,%2,X3) — {Z, Z,W,W}:

Xai = ZAaAa + 2ol +WAafla +WhaAa | (2:2)

The “+" and “—" fields are defined as the projections oit@and i spinors, respectivelyy, =
APy, o =Yg, fry =A9AFfqp, ete.

In general fields with derivatives or, equivalently, fieldsebitrary space-time positions have
“bad” SL(2,R) transformation properties. In particular under an infsiiteal special conformal
transformation in the light-cone direction:

z

. 1 . W w _
L/—’+(ZaZaWaVV) - m{d& <1—|—EZ,Z, 1—|—EZ, l+EZ> +EZ\NL1U<>} ) (23)

which means that, e.g., the light-ray figldgy,](z,0,0,0) does not transform homogeneously
underSL(2,R). The solution suggested in [5] is to allow only

LIJ+(2727W70) = i:\:\::.l[ W zw+]( ) (ZZOVV) Zkl nl DnD '1U ]( ) (24)

as independent one-particle operators in the basis, andhalie another “half” of transverse deriva-
tives using EOM, e.gDw](z) = [D-+ ¢4 ](2) = [D4++Y-](2) + EOM = 20,y (z) + EOM. This
construction is exemplified in Table 1 where one-particleatiquark operators are listed for the
lowest few values of collinear twig and conformal spirj. These are, in turn, the building blocks
for gauge-invariant composite light-ray operators, e.g.

{10205, ()} {021, (22)} {10.2]0w; (25)}° (2.5)
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where|a, b] stands for the light-like Wilson line connecting the indeg points and:@°C is a color
tensor. Notice that e.g. for twist = 2 one has to includ¢,_ andD, ;. asindependenbperators.

In concrete applications it is often possible to get ridDgfiy, using EOM and exploiting specific
structure of the matrix elements of interest, e.g. if therad transverse momentum transfer be-
tween the initial and the final state. However, after thisiotidn the conformal symmetry becomes
obscured.

3. Embedding SL(2,R) in the full conformal group SQ4,2)

The SL(2,R)-invariance of the BFLK kernels [1] and the known fact thabtparticle repre-
sentations ofSL(2,R) are non-degenerate, allows one to write these kernels ipacinform as
functions of the quadratic Casimir operator of the symmgtoup. For example, for the simplest
case of the two quarks with the same chiralitf (z1, ) = Y/, (z1) Y (z) (with open color indices
i,k) the kernelH in the RG equation

0 17} s
(“ﬁ +B(9)0—g + g—nH> [0(21,2)]r=0
can be written as
B (Ba) =~ (e [ 005 -0 -3, @)

wherey(J) is the Eulenp-function and the operatdAﬁz in coordinate (fundamental) representation
is defined formally as

a A~ A~
cSeR __ 2 i (21— 2)? = J12(d12— 1).

As noticed in [7], the same two conditions (invariance and-degeneracy) are fulfilled for
composite operators built of “physical” fields, with respethe full conformal grousQ(4,2).
This implies that RG equations for the light-ray fields witbi&rary spin projections can be written
in terms of the quadratic Casimir operator®(4, 2), (CSOM’Z) = jlz(jlz— 1), and the functional
form of this dependence must be the same for all operatofseisames(4,2) multiplet, hence
H(jﬂ) must in fact be the same function as above (for all two chivalrk operators).

In the case of one “plus” and one “minus” quark field as in Fig.vie have to deal with
two-dimensional (matrix) representations, i.e.

saa2) (Y-@y¢) _ [Coyp Cp) (Y- @Yy 3.2
K (l/-’+ ® W) <(C+ C ) \yy- (3.2
and in this particular case we find
0 (32221
=— 3.3

wheredy = d/0z andz, = z; — z,. SinceH commutes wittﬂg’q“’z), they share the same eigen-

;)222: G¥ ¢t = n+2n+ 16, S ¢, = (n+Dng,,

&)

@0(472) = j(j_ 1)7

functions ¢ (z1,2) = <
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corresponding td = n+ 1 andJ = n, respectively. Finally, aBl(J) is known from the quasipar-
tonic sector, Eq. (3.1), the result for the RG kernel acting-b—) two-quark operators can now be
restored by simple algebra, see [6] for details. This tepimis general and allows one to compute
all kernels of the type shown Fig. 1b in terms of the standaraksipartonic kernels Fig. 1a. The
complete list of kernels in coordinate representation ] be found in Sec. 5 of Ref. [6].

4. Particle Number Changing Kernels

It turns out that conformal symmetry is sufficient to detarenthe particle number changing
kernels of the type shown in Fig. 1 122_’3), in terms of quasipartonic BFLK kernels as well,
although the procedure is a bit more complicated [6]. Thg pessibility of this connection is due
to the fact that conformal (in fact, Lorentz) transformaticdo not preserve the number of fields.
For example, applying the generator of translations instvarse direction to the light cone to the

"plus" quark field one obtains, in the light-cone gadge = 0,

i[P 3 Wil =050 =20, P +igA 5, + EOM. (4.1)

Eqg. (4.1) is an exact operator identity which must be fulfily renormalized operators. Therefore,
in principle, H(122_>2 andIHI(lZZ_’?’) kernels are related, although one has to find an effectiaegty to
use these relations in practical calculations. As an i#igtn, consider the same example as above,
the y_ ® Y, operator. We are now interested in the mixing ¢, Y. QY_ — Y, Q Yy ® f_++.
Using the notatio, 1 (z1,2) = Y4 (1) ® Y+ (2), O+ (21, 22) = Y (2) @Y+ (2) , O (71, 22) =

U (2)Y_(22),0¢ (2, 22,23) = Y (21) @ Y1 () ® 4 (z3) and taking into account Eq. (4.1) one
obtains

970 (2, 2)]r = 201[0) (21, 22) p+ 20,10} _(20, 22) R + 98 @ 10) [R5 () 62, (20, 22) ]
+ig(li @b, )[ﬁ++(zl,zz)AZ)\(22)]R+ EOM, (4.2)

where[0]g = [¢]r — €. This equation contains two operatafs ., ¢, which we are interested
in, and the quasipartonic operatafs . , ﬁ++(21,22)AZ;(Za), renormalization of which is already
known. (In the light-cone gaug(ey)\)f_H = a+Au;.) Note that application of the transverse
derivative to the renormalized two-particle operator oa lth.s. of (4.2) generates (because of
Eq. (4.1)) both two-particle and three-particle contridag which have to be taken into account.
Let (67 * ]k = 4~ HF; Os be the three-particle counterterms of interest. After safgebra one

~ 4me
obtains, schematlcally

O H_§ + &,H'; = known expression (4.3)

This is a first-order differential equation éwo unknown integral operatofd_* andH"; which
map functions of three variables to functions of two vaiabland at first sight is not sufficient to
determine them uniquely. Howevéi_ andH" have different transformation properties with
respect to th&L(2,R) group. This implies that Eq. (4.3) is not invariant and irdiéelecouples in
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a pair of (simple)SL(2,R) invariant equations, one for each kernel. The final result is
1 a
) (@ z) = Zo{ 1Pt [da [ dBpoi#pzeB)
1 1 B
i) ot [ da [ 8P o2}, @4
a

wherea =1—-a, Zf, = az; + az, etc. It coincides with the result of the direct calculation
Ref. [5]. One can check that this expression is manifeStl§2) invariant. The present approach
proves to be very effective, especially for gluon operatbrdotal there exist 16 independent23
kernels of the type shown in Fig. 1c which are all calculateRef. [6], see Sec. 7 therein.

5. Conclusions

Combining the kernels in Fig. 1a,b,c one obtains a completefibuilding blocks for the
renormalization of operators that involve at most one “pantonic” field. To the twist-4 accuracy,
contributions of the type Fig. 1d,e can be dispensed offgusguations of motion. Therefore, the
results presented in our work are sufficient for writing daavhitrary QCD evolution equations to
the twist-four accuracy and e.g. calculation of the spactafi anomalous dimensions of arbitrary
twist-four operators. The kernels are written for the remalization of coordinate-space light-ray
operators [8] built of chiral fields and are manifes8y(2) invariant. We believe that this form
is most suitable in practical applications. The results easily be recast in momentum space, in
the form of evolution equations for generalized partonritiistions [9] . The application of our
formalism to the scale-dependence of multiparton coigeldtinctions relevant for the single spin
asymmetries is presented in [10] and to the higher-twistammncdistribution amplitudes in [5].
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