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1. Introduction

The theoretical description of higher-twist corrections in QCD is based on the Wilson Oper-
ator Product Expansion (OPE) and involves contributions ofa large number of local operators. A
general formalism was developed by Bukhvostov, Frolov, Lipatov and Kuraev (BFLK) [1] for the
special class of so-called quasipartonic operators that are built of “plus” components of quark and
gluon fields. For each twist, the set of quasipartonic operators is closed under renormalization and
the renormalization group (RG) equation can be written in a Hamiltonian form that involves two-
particle “interaction” kernels, cf. Fig. 1a, that can be expressed in terms of two-particle Casimir
operators of the collinear subgroupSL(2;R) of the conformal group. In this formulation symme-
tries of the RG equations become explicit. Moreover, the corresponding three-particle quantum-
mechanical problem turns out to be completely integrable for a few important cases, and in fact
reduces to a Heisenberg spin chain [2], see [3, 4] for a reviewand further references.
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Figure 1: Schematic structure of one-loop renormalization group kernels in QCD

The goal of this study [5, 6] is to generalize the BFLK approach to the situation where not
all contributing operators are quasipartonic, as it provesto be the case starting with twist four. On
this way, there are two complications. First, the number of fields (“particles”) is not conserved.
To one-loop accuracy, the mixing matrix of operators with a given twist has a block-triangular
structure as the operators with less fields can mix with ones containing more fields but not vice
versa, cf. Fig. 1c,d,e. Operators with the maximum possiblenumber of fields for the given twist
are quasipartonic. Second, operators involving “minus” and “transverse” derivatives and/or field
components must be included. The problem is that transversederivatives generally do not have
good transformation properties with respect to theSL(2;R) group so that the conformal symmetry
becomes obscured.

The main new contribution of this work is the calculation of all existing 2! 2 kernels of the
type shown in Fig. 1b and the 2!3 kernels corresponding to operator mixing of one “partonic” and
one “non-partonic” field in three-particle quasipartonic operators, Fig. 1c. To this end we suggest
a new technique which bypasses the calculation of Feynman diagrams.

2. Conformal Operator Basis

In Ref. [5] we have constructed a complete basis in the sectorof physical operators of arbitrary
twist, i.e. operators non-vanishing on the equations of motion (EOM). The evolution kernels cal-
culated in this basis are manifestlySL(2;R) invariant which allows one to use powerful algebraic
methods to calculate their renormalization [6], bypassingcalculation of Feynman diagrams.
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j = 1=2 j = 1 j = 3=2 j = 2 j = 5=2

E = 1 ψ+
E = 2 ψ� Dwψ+
E = 3 Dw̄ψ�; Dz̃ψ+ D2

wψ+
E = 4 Dz̃ψ� D2

w̄ψ�; DwDz̃ψ+ D3
wψ+

Table 1: One-particle chiral quark operators with the lowest twistE and conformal spinj.

An essential part of our approach is going over to the spinor formalism. In this way each
covariant four-vectorxµ is mapped to a hermitian matrixx, a Dirac (quark) spinorq is written in
terms of two-component Weyl spinorsψα and χ̄ β̇ , and the gluon strength tensorFµν is decom-
posed in chiral and antichiral symmetric tensors,fαβ and f̄α̇β̇ , which belong to(1;0) and(0;1)
representations of the Lorentz group.

The two independent light-cone directions,nµ andñµ , n2 = ñ2 = 0, can be parameterized in
terms of auxiliary spinors

nαα̇ = λα λ̄α̇ ; ñαα̇ = µα µ̄α̇ : (2.1)

The basis vectors in the transverse plane to(n; ñ) can be chosen asµα λ̄α̇ andλα µ̄α̇ , so that an
arbitrary four-vector can be described by two real light-cone coordinatesz andz̃ and two complex
coordinatesw, w̄= w� in the transverse plane,xµ = (x0;x1;x2;x3)!fz; z̃;w; w̄g:

xαα̇ = zλα λ̄α̇ + z̃µα µ̄α̇ +wλα µ̄α̇ + w̄µα λ̄α̇ ; (2.2)

The “+” and “�” fields are defined as the projections ontoλ andµ spinors, respectively:ψ+ =
λ α ψα , ψ� = µα ψα , f++ = λ αλ β fαβ , etc.

In general fields with derivatives or, equivalently, fields at arbitrary space-time positions have
“bad” SL(2;R) transformation properties. In particular under an infinitesimal special conformal
transformation in the light-cone direction:

ψ+(z; z̃;w; w̄)! 1(1+zε)2

�
ψ+� z

1+ εz
; z̃; w

1+ εz
; w̄
1+ εz

�+ εzw̄ψ�� : : :�� ; (2.3)

which means that, e.g., the light-ray field[Dw̄ψ+℄(z;0;0;0) does not transform homogeneously
underSL(2;R). The solution suggested in [5] is to allow only

ψ+(z; z̃;w;0) = ∑
n;k z̃k

k!
wn

n!
[Dn

wDk
z̃ψ+℄(z) ; ψ�(z; z̃;0; w̄) = ∑

n;k z̃k

k!
w̄n

n!
[Dn

w̄Dk
z̃ψ�℄(z) (2.4)

as independent one-particle operators in the basis, and eliminate another “half” of transverse deriva-
tives using EOM, e.g.[Dw̄ψ+℄(z)� [D�+ψ+℄(z) = [D++ψ�℄(z)+EOM= 2∂zψ�(z)+EOM. This
construction is exemplified in Table 1 where one-particle chiral quark operators are listed for the
lowest few values of collinear twistE and conformal spinj. These are, in turn, the building blocks
for gauge-invariant composite light-ray operators, e.g.C abc

n[0;z1℄ψ̄+(z1)oan[0;z2℄ f++(z2)obn[0;z3℄Dwψ+(z3)oc
(2.5)
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where[a;b℄ stands for the light-like Wilson line connecting the indicated points andC abc is a color
tensor. Notice that e.g. for twistE = 2 one has to includeψ� andDwψ+ asindependentoperators.
In concrete applications it is often possible to get rid ofDwψ+ using EOM and exploiting specific
structure of the matrix elements of interest, e.g. if there is no transverse momentum transfer be-
tween the initial and the final state. However, after this reduction the conformal symmetry becomes
obscured.

3. Embedding SL(2;R) in the full conformal group SO(4;2)
TheSL(2;R)-invariance of the BFLK kernels [1] and the known fact that two-particle repre-

sentations ofSL(2;R) are non-degenerate, allows one to write these kernels in compact form as
functions of the quadratic Casimir operator of the symmetrygroup. For example, for the simplest
case of the two quarks with the same chiralityO ik(z1;z2) = ψ i+(z1)ψk+(z2) (with open color indices
i;k) the kernelH in the RG equation�

µ
∂

∂ µ
+β (g) ∂

∂g
+ αs

2π
H �[O(z1;z2)℄R = 0

can be written as H ik
i 0 k0( bJ12) = �4(tb)ii 0(tb)kk0 �ψ(bJ12)�ψ(1)� 3

4

� ; (3.1)

whereψ(J) is the Eulerψ-function and the operatorbJ12 in coordinate (fundamental) representation
is defined formally as C SL(2;R)

2 =� ∂
∂z1

∂
∂z2

(z1�z2)2 = bJ12(bJ12�1) :
As noticed in [7], the same two conditions (invariance and non-degeneracy) are fulfilled for

composite operators built of “physical” fields, with respect to the full conformal groupSO(4;2).
This implies that RG equations for the light-ray fields with arbitrary spin projections can be written
in terms of the quadratic Casimir operator ofSO(4;2), C SO(4;2)

2 = bJ12(bJ12�1), and the functional
form of this dependence must be the same for all operators in the sameSO(4;2) multiplet, henceH (bJ12) must in fact be the same function as above (for all two chiral quark operators).

In the case of one “plus” and one “minus” quark field as in Fig. 1b we have to deal with
two-dimensional (matrix) representations, i.e.C SO(4;2)

2

 
ψ�
ψ+
ψ+
ψ�! =  C ++ C +�C �+ C ��! ψ�
ψ+

ψ+
ψ�! (3.2)

and in this particular case we findC SO(4;2)
2 = bJ(bJ�1); bJ=� 0 ∂2z21

∂1z12 0

! ; (3.3)

where∂k = ∂=∂zk andz12 = z1�z2. SinceH commutes withC SO(4;2)
2 , they share the same eigen-

functionsϕ�
n (z1;z2) = � 1�1

�
zn
12: C SO(4;2)

2 ϕ+
n = (n+2)(n+1)ϕ+

n , C SO(4;2)
2 ϕ�

n = (n+1)nϕ�
n ,
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corresponding toJ = n+1 andJ = n, respectively. Finally, asH (J) is known from the quasipar-
tonic sector, Eq. (3.1), the result for the RG kernel acting on (+�) two-quark operators can now be
restored by simple algebra, see [6] for details. This technique is general and allows one to compute
all kernels of the type shown Fig. 1b in terms of the standard quasipartonic kernels Fig. 1a. The
complete list of kernels in coordinate representation [8] can be found in Sec. 5 of Ref. [6].

4. Particle Number Changing Kernels

It turns out that conformal symmetry is sufficient to determine the particle number changing
kernels of the type shown in Fig. 1c,H (2!3)

12 , in terms of quasipartonic BFLK kernels as well,
although the procedure is a bit more complicated [6]. The very possibility of this connection is due
to the fact that conformal (in fact, Lorentz) transformations do not preserve the number of fields.
For example, applying the generator of translations in transverse direction to the light cone to the
"plus" quark field one obtains, in the light-cone gaugeA++ = 0,

i[Pµλ̄ ;ψ+℄ = ∂µλ̄ ψ+ = 2∂+ψ�+ igAµλ̄ ψ++ EOM: (4.1)

Eq. (4.1) is an exact operator identity which must be fulfilled by renormalized operators. Therefore,
in principle,H (2!2)

12 andH (2!3)
12 kernels are related, although one has to find an effective strategy to

use these relations in practical calculations. As an illustration, consider the same example as above,
theψ�
ψ+ operator. We are now interested in the mixingψ�
ψ+;ψ+
ψ�! ψ+
ψ+
 f̄++.
Using the notationO++(z1;z2) =ψ+(z1)
ψ+(z2) ;O�+(z1;z2) = ψ�(z1)
ψ+(z2) ;O+�(z1;z2) =
ψ+(z1)
ψ�(z2) ;O f (z1;z2;z3) =ψ+(z1)
ψ+(z2)
 f̄++(z3) and taking into account Eq. (4.1) one
obtains

∂µλ̄ [O i j++(z1;z2)℄0R = 2∂1[O i j�+(z1;z2)℄0R+2∂2[O i j+�(z1;z2)℄0R + ig(tb
ii 0 
 I j j 0)[Ab

µλ̄ (z1)O i0 j 0++(z1;z2)℄0R+ ig(Iii 0 
 tb
j j 0)[O i0 j 0++(z1;z2)Ab

µλ̄ (z2)℄0R+EOM; (4.2)

where[O℄0R = [O℄R�O. This equation contains two operatorsO�+, O+� which we are interested
in, and the quasipartonic operatorsO++, O++(z1;z2)Ab

µλ̄ (zi), renormalization of which is already

known. (In the light-cone gauge(µλ ) f̄++ = ∂+Aµλ̄ .) Note that application of the transverse
derivative to the renormalized two-particle operator on the l.h.s. of (4.2) generates (because of
Eq. (4.1)) both two-particle and three-particle contributions which have to be taken into account.
Let [O��

k ℄0R = αs
4πε H ��! fO f be the three-particle counterterms of interest. After somealgebra one

obtains, schematically

∂1H �+! f +∂2H +�! f = known expression: (4.3)

This is a first-order differential equation ontwo unknown integral operatorsH �+! f andH +�! f which
map functions of three variables to functions of two variables, and at first sight is not sufficient to
determine them uniquely. However,H �+! f andH +�! f have different transformation properties with
respect to theSL(2;R) group. This implies that Eq. (4.3) is not invariant and indeed it decouples in
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a pair of (simple)SL(2;R) invariant equations, one for each kernel. The final result is[H (�+)! f O f ℄(z1;z2) = z2
12

n
f abctb
 tc

Z 1

0
dα

Z ᾱ

0
dββ O f (zα

12;z2;zβ
21)+ i(tatb)
 tb

Z 1

0
dα

Z 1

ᾱ
dβ

ᾱβ̄
α
O f (zα

12;z2;zβ
21)o; (4.4)

whereᾱ = 1�α , zα
12 = ᾱz1 +αz2, etc. It coincides with the result of the direct calculationin

Ref. [5]. One can check that this expression is manifestlySL(2) invariant. The present approach
proves to be very effective, especially for gluon operators. In total there exist 16 independent 2! 3
kernels of the type shown in Fig. 1c which are all calculated in Ref. [6], see Sec. 7 therein.

5. Conclusions

Combining the kernels in Fig. 1a,b,c one obtains a complete set of building blocks for the
renormalization of operators that involve at most one “non-partonic” field. To the twist-4 accuracy,
contributions of the type Fig. 1d,e can be dispensed off using equations of motion. Therefore, the
results presented in our work are sufficient for writing downarbitrary QCD evolution equations to
the twist-four accuracy and e.g. calculation of the spectrum of anomalous dimensions of arbitrary
twist-four operators. The kernels are written for the renormalization of coordinate-space light-ray
operators [8] built of chiral fields and are manifestlySL(2) invariant. We believe that this form
is most suitable in practical applications. The results caneasily be recast in momentum space, in
the form of evolution equations for generalized parton distributions [9] . The application of our
formalism to the scale-dependence of multiparton correlation functions relevant for the single spin
asymmetries is presented in [10] and to the higher-twist nucleon distribution amplitudes in [5].
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