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1. Introduction

Understanding the origin of electroweak symmetry breaking is one of the main tasks of the
Large Hadron Collider (LHC). Electroweak precision data predicts a lightHiggs boson. To solve
the hierarchy problem the Standard Model (SM) needs to be embedded in alarger theory for an
ultra-violet completion. The Minimal Supersymmetric Standard Model (MSSM) isa very promis-
ing candidate for that. Higgs-boson production in vector-boson fusion with a subsequent decay
of the Higgs into a pair of tau leptons is one of the most auspicious channels for an early discov-
ery [1, 2]. The discovery reach for this channel covers the entire MSSM parameter space [3].

Determining the relations in the Higgs sector, like the gauge and Yukawa couplings [4], will
then be the next step for the LHC. These measurements require a good knowledge of the asso-
ciated rates and their theory errors need to be under control, including higher-order effects. The
next-to-leading-order QCD corrections to vector-boson-fusion Higgsproduction are fairly small,
of the order of ten percent [5]. This is due to the color structure of the process which forbids gluon
exchange between the two quark lines, combined with its forward-jet nature. The electroweak cor-
rections turn out to be of similar size and have opposite sign for the phenomenologically relevant
region of a light Higgs boson [6]. Also the gluon-induced NNLO-QCD effects [7] and the interfer-
ence between vector-boson-fusion and gluon-fusion Higgs production [8] have been investigated
and found to be tiny.

For the MSSM these calculations must be augmented by the corrections originating from the
additional supersymmetric particles and the extended Higgs sector. They need to be included for
the determination of the Higgs sector, either as correction or as a theory uncertainty for early
running or if the MSSM spectrum is not favorable to precision MSSM analyses [9]. Both cases
need a detailed study of the supersymmetric contributions to vector-boson fusion [10, 11] and also
gluon-fusion Higgs production [12].

2. Corrections in the MSSM Higgs sector

The coupling of the light supersymmetric Higgs to vector bosons receives an additional factor
sin(β −α) compared to its SM counter part, where tanβ is the ratio of the vacuum expectation
values of the two Higgs doublets andα the mixing angle turning the two CP-even degrees of
freedom into mass eigenstates. Hence for a given Higgs mass we obtain the tree-level MSSM
cross section by simply rescaling the SM rate with sin2(β −α). For pseudoscalar Higgs masses
mA exceeding 200 GeV this factor is close to one. At next-to-leading order twoadditional types
of diagrams appear: First, there are the ones where the SM particles in the loop are replaced by
their supersymmetric counterparts. As we assumeR parity conservation, a loop consists purely
of either SM or supersymmetric particles. This allows for a diagrammatic separation of the new
MSSM contributions. Second, contributions from the extended Higgs sector of the MSSM appear.
As there is no one-to-one correspondence of the Standard-Model Higgs to an MSSM particle, we
cannot separate them at the diagram level. Instead, we compute the full MSSM-Higgs corrections
at the amplitude level and then subtract the SM Higgs part, multiplied by the tree-level correction
factor. Since both the full MSSM and the SM are gauge-invariant, our supersymmetric corrections
calculated in that way share this feature.
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The large number of diagrams requires us to use automated tools for the evaluation. We
compute the cross section with HadCalc [13] using the MRST 2002 NLO pdf set [14], where we
have generated the Feynman diagrams and amplitudes with FeynArts and FormCalc [15]. The
evaluation of the loop integrals we perform with LoopTools [16]. For an optimal mapping of the
phase-space integration we use code from VBFNLO [17]. We assume minimal flavor violation,
whose effect is small after taking all experimental and theoretical constraints into account [18], as
well as aCP-conserving MSSM.

The mass of the lightest Higgs boson receives large loop corrections [19, 20, 21, 22], which
push its value beyond the limits from LEP2 [23]. Therefore, we need to include them for a phe-
nomenologically relevant analysis. Linked to the mass shift are correctionsto the Higgs cou-
plings [24], which we should add at the same order in perturbation theory.For the numerical
evaluation of the Higgs sector we use FeynHiggs 2.6.2 [20]. We have checked that the differences
to a program using the effective-potential approach [22] are small [11].

Consistent with FeynHiggs, we perform the renormalization of the Higgs sector including
tanβ in the DR scheme. According to the LSZ prescription we then need to add finite wave-
function renormalization terms to ensure that the residue of the Higgs boson pole is unity. We
include them as an additional one-loop correction with the amplitude

Γ = (
√

Zhh−1)Γh0 +
√

ZhhZhHΓH0 , (2.1)

whereΓh0 and ΓH0 are the tree-level amplitudes for vector-boson-fusionh0 andH0 production,
respectively. We use

√

Zhh = 1−
1
2

Re

(

d
dp2 Σ̂hh(p2)

)∣

∣

∣

∣

p2=m2
h0

(2.2)

ZhH =
1

m2
H0 −m2

h0

Re(Σ̂hH(mh0)) (2.3)

where thêΣ are the renormalized one-loop self energies [20] and the Higgs boson masses are loop-
corrected. All Standard-Model parameters are renormalized on-shell.

For our numerical analysis we require the following standard vector-boson-fusion cuts:

y j < 4.5 , (pT) j > 20 GeV, y j1 ·y j2 < 0 ,

|y j1 −y j2| > 4.5 , minv( j1, j2) > 600 GeV. (2.4)

3. Supersymmetric corrections

In Fig. 1 we show an example set of one-loop Feynman diagrams which appear in our calcula-
tion. We also include diagrams where the Higgs is radiated off the quark lines or the weak bosons
are replaced by photons. The numerical results we first show for the parameter point SPS1a [25],
where we have used the high-scale definition and evolved them to the low scale using SoftSUSY
2.0.14 [26]. The electromagnetic coupling constant we choose at vanishingmomentum. Also we
neglect all masses of the first two quark and lepton generations. The spectrum of this parameter
point consists of fairly light particles with masses of uncolored particles typically at 100−200 GeV
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Figure 1: Example Feynman diagrams contributing to QCD (upper) and electroweak (lower) vertex correc-
tions, boxes and pentagons.

diagram ∆σ/σ [%] ∆σ/σ [%]

∆σ ∼ O(α) ∆σ ∼ O(αs)

self energies 0.199

qq′W+qqZ -0.392 -0.0148
qqh -0.0260 0.00545
WWh+ZZh -0.329

box 0.0785 -0.00518
pentagon 0.000522 -0.000308

sum of all∆σ/σ = −0.484 %

∆σ/σ [%]

VVh O(α) O(αs) all

SPS1a -0.329 -0.469 -0.015 -0.484
SPS1b -0.162 -0.229 -0.006 -0.235
SPS2 -0.147 -0.129 -0.002 -0.131
SPS3 -0.146 -0.216 -0.006 -0.222
SPS4 -0.258 -0.355 -0.008 -0.363
SPS5 -0.606 -0.912 -0.010 -0.922
SPS6 -0.226 -0.309 -0.010 -0.319
SPS7 -0.206 -0.317 -0.006 -0.323
SPS8 -0.157 -0.206 -0.004 -0.210
SPS9 -0.094 -0.071 -0.003 -0.074

Table 1: Complete MSSM corrections to the processpp→ qqhby diagram types for the parameter point
SPS1a (left) and for all SPS points (right). Tables taken from Ref. [11].

and squarks and gluinos around 500−600 GeV, and tanβ = 10 leading to only small decoupling
effects in the down-sector. We have compared our results to Ref. [10],where the vertex-correction
contributions of the upper-left diagram of Fig. 1 have already been evaluated in the limit of equal
squark masses, as well as to an upcoming second calculation of these corrections [27]. In both
cases we find good agreement.

All supersymmetric QCD corrections turn out to be very small as we can see inTable 1. We
find an even bigger suppression than in the Standard Model, where gluonexchange between the
two quark lines leads to a vanishing color trace.

Two tree-level vertices receive one-loop corrections,qqV andVVh. Only at the first one
squark/gluino loops appear. Since theW boson couples only to left-handed particles and the mix-
ing between left- and right-handed light-flavor squarks is negligible, like attree-level both external
quarks are then left-handed. Therefore, the gluino propagator in the fermion trace can only con-
tribute via its momentum and not via a gluino-mass insertion which would require a chirality flip.
Hence the typical scale in the numerator ismh/2, an order of magnitude below the gluino mass in
the denominator.
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In the electroweak case, also the lighter charginos and neutralinos in the loop couple to the
vector boson. This means that we can add a double mass insertion into the fermion line which can
partly compensate for the heavy masses in the loop denominator. This effectleads to a relative
enhancement of the electroweak over the QCDqqV vertex correction we observe in Table 1.

In both box diagrams shown in the upper line of Fig. 1 the ˜qq̃′W andqq̃g̃ couplings are the
same, while the ˜qq̃hcoupling is proportional toT3−Qs2

W, which is around1
3 for the up and− 5

12 for
the down sector. Therefore a cancellation of roughly one order of magnitude occurs. This cannot
be broken by different squark masses, because the left-handed squarks form anSU(2) doublet and
again left-/right-handed squark mixing effects are tiny. For the subleadingZZ fusion channel and
the electroweak corrections this argument does not hold. Here we indeedfind corrections at a more
natural level.

For supersymmetric pentagon diagrams there is an additional possibility with two colored
particles exchanged, depicted in the upper-right corner of Fig. 1. Formally, the interference with
the tree-level diagram is of orderO(α2

s α2), which is as large as the Born contributionO(α3).
However, these diagrams have completely different kinematic properties compared to the vector-
boson-fusion topology. Combined with the large loop masses this leads to a negligible contribution.

From these arguments we see that there is not a single explanation for the smallness of the
supersymmetric QCD corrections, but a set of mechanisms which can explainthese at first sight
surprising results.

On the right-hand side of Table 1 we show numerical results for all SPS parameter points,
which probe typical different parts of the MSSM parameter space. As expected, the overall picture
of our numerical results stays unchanged. We see that the supersymmetricQCD corrections are
strongly suppressed and their electroweak counterpart is less or around one percent. A large mass
splitting in the stop sector leads to comparably large effects for the SPS5 point.

4. Conclusions

We have presented a calculation of the next-to-leading order supersymmetric corrections to
Higgs-boson production via vector-boson-fusion in the MSSM. This is animportant ingredient for
a precision analysis of the Standard-Model and the MSSM Higgs sector atthe LHC. We find that
the supersymmetric QCD corrections are reduced to a negligible level. This is due to various effects
ranging from the color structure and the coupling structure to the kinematics of the process. The
supersymmetricO(α) contributions turn out to be at the percent level and therefore at a typical size
for massive electroweak corrections. In general, the total correctionscan reach up to four percent
for parameter points still allowed by direct searches, with usual sizes at or below one percent, and
typically negative sign.
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