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1. Thecalculation

The procesg'e™ — 3jets is of particular interest for the measurement of thenst coupling
as. Three-jet events are well suited for this task becausestiding term in a perturbative calcula-
tion of three-jet observables is already proportional togtitong coupling. For a precise extraction
of the strong coupling one needs in addition to a precise uneagent of three-jet observables in
the experiment a precise prediction for this process froeomh This implies the calculation of
higher order corrections. The proces®™ — 3 jets has been been calculated recently at next-to-
next-to-leading order (NNLO) in QCD [1, 2]. The master fotmtor the calculation of a three-jet
observable at an electron-positron collider is
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whereq; andq, are the momenta of the initial-state particles ari{8$) corresponds to the flux
factor and the average over the spins of the initial stattigies. The observable has to be infrared
safe, in particular this implies that in single and doubleegplved limits we must have

O4(P1, .-, Pa, 01, 02) — O3(Py, ... P3,01,02)  for single unresolved limits
Os(P1,---, P5,01,02) — O3(Py,-.., P5,01,02) for double unresolved limits ~ (1.2)

7y is the amplitude wit final-state partons. At NNLO we need the following pertursex-

pansions of the amplitudes:
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Here;z%n(') denotes an amplitude withfinal-state partons arldoops. We can rewrite symbolically
the LO, NLO and NNLO contribution as

(o) = [ 04dof? + [ G3dof?,

The computation of the NNLO correction for the process™ — 3 jets requires the knowledge of
the amplitudes for the three-parton final stat&™ — qqg up to two-loops [3, 4], the amplitudes
of the four-parton final statess"e~ — qggg andete™ — qqg’q up to one-loop [5— 8] and the five-
parton final states™ e~ — qgggg ande™ e~ — qgg'g'g at tree level [9—11]. The most complicated
amplitude is of course the two-loop amplitude. For the dation of the two-loop amplitude
special integration technigues have been invented [12-Tt# analytic result can be expressed in
terms of multiple polylogarithms, which in turn requiresutiones for the numerical evaluation of
these functions [16, 17].
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2. Subtraction and slicing

Is is well known that the individual pieces in the NLO and ire tNNLO contribution of
eq. (1.4) are infrared divergent. To render them finite, atmné of subtraction and slicing is
employed. The NNLO contribution is written as [18]

(G)NNLO / (@’5 doém — Opodai™e ﬁ3oda§°’2)>
+/ <6’4da£1) + Ogodal™® — ﬁgodaél’l))

+ [ (0sd0f? + G50da®® + 0500 (2.1)

da;"® is the NLO subtraction term for 4-parton configuratioderg(o’z) and dorél’1> are generic
NNLO subtraction terms, which can be further decomposem int

daéO,Z) _ dag"“b'e—l—dag"erda;O“—da,i;efated,

dagt? = day® +daf " —dad™ — da" + dafede. (2.2)

In a hybrid scheme of subtraction and slicing the subtradiisms have to satisfy weaker condi-
tions as compared to a strict subtraction scheme. It is qugtired that

(a) the explicit poles in the dimensional regularisatiorapaetere in the second line of eq. (2.1)
cancel after integration over unresolved phase spacesfir point of the resolved phase
space.

(b) the phase space singularities in the first and in the sdoomof eq. (2.1) cancel after azimuthal
averaging has been performed.

Point (b) allows the determination of the subtraction tefrosn spin-averaged matrix elements.
The subtraction terms can be found in [19-21]. The subtracterm da?()o,z) without dor§°ft
would approximate all singularities except a soft singleegnlved singularity. The subtraction
term dor§°ft takes care of this last piece [2, 22]. The azimuthal averagei performed in the
Monte Carlo integration. Instead a slicing parametds introduced to regulate the phase space
singularities related to spin-dependent terms. It is irtgurto note that there are no numerically
large contributions proportional to a power ofrinvhich cancel between the 5-, 4- or 3-parton

contributions. Each contribution itself is independentjah the limitn — 0.

3. Monte Carlo integration

The integration over the phase space is performed numigrigdh Monte Carlo techniques.
Efficiency of the Monte Carlo integration is an importantuissespecially for the first moments
of the event shape observables. Some of these momentseaizable contributions from the
close-to-two-jet region. In the 5-parton configuratiorstbdrresponds to (almost) three unresolved
partons. The generation of the phase space is done sedjyesteting from a 2-parton config-
uration. In each step an additional particle is inserted E&l. In going fromn partons ton+ 1
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partons, the+ 1-parton phase space is partitioned into different chaniglthin one channel, the
phase space is generated iteratively according to

dghi1 = dghd@unresolved i, j k (3.1)

The indiced, j andk indicate that the new particlgis inserted between the hard radiatoesmdk.
For each channel we require that the product of invariggs is the smallest among all considered
channels. For the unresolved phase space measure we have

1 1 21
d@unresolved i,jk = %/dxl/dXZ/d‘p O(1—x1—X2) (3.2)
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We are not interested in generating invariants smaller fimes), these configurations will be re-
jected by the slicing procedure. Instead we are interestgdrerating invariants with values larger
than(ns) with a distribution which mimics the one of a typical matriement. We therefore gener-
ate the(n+ 1)-parton configuration from the-parton configuration by using three random numbers
u1, Uz, uz uniformly distributed in[0, 1] and by setting

X1 =Nps, X2 =Nps ¢ =2Mus. (3.3)

The phase space parametgs is an adjustable parameter of the order of the slicing paterme
The invariants are defined as

Sj =XiSjk, Sjk=2X2Sjk, Sk = (1—X1—X)Sijk. (3-4)

From these invariants and the valuefofve can reconstruct the four-momenta of the- 1)-parton
configuration [24]. The additional phase space weight dileadnsertion of thén+ 1)-th particle
is
1 SiSik.2
w=——-In : 3.5

162 S Nps (3.5)
Note that the phase space weight compensates the typicalatifactorsjx/(sjSjk) of a single
emission. As mentioned above, the full phase space is cmtstt iteratively from these single
emissions.

4. Numerical results

Fig. 1 shows the results for the Durham three jet rate andhthestt distribution at the LEP
| centre-of-mass energy/Q? = my with as(mz) = 0.118. The LO, NLO and NNLO predictions
are shown together with the experimental measured valoes tihe Aleph experiment [25]. The
bands give the range for the theoretical prediction obthfrem varying the renormalisation scale
from u = Q/2 to u = 2Q. Note that the theory predictions in these plots are the pereirbative
predictions. Power corrections or soft gluon resummatfteces are not included in these results.

In a recent calculation the logarithmic terms of the NNLOftioient of the thrust distribution
have been calculated based on soft-collinear effectiveryn@6]:

dC 1
d—rr = ?[a5ln5r+a4ln4r+a3In3r+a2In2T+a1Inr+a0+ﬁ(r)], T=1-T. (4.1
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Figure 1: The scale variation of the Durham three jet rate and the thlisgibution aty/Q? = my with
as(mz) = 0.118. The bands give the range for the theoretical prediafiained from varying the renor-

malisation scale fronu = mz /2 to 4 = 2my.
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Figure 2: A comparison of the NNLO coefficient of the thrust distrilmrtias obtained from the numerical
program with the logarithmic terms obtained from SCET.

The values of the;’s are forN¢ =5
ag=—1896, a4 =—-2074, az=—1223, a, =14883, a; = —8223, ay= —6834.

The logarithmic terms give a good description of the thrustritbution in the close-to-two jet
region. They are not expected to give an accurate resuleihdnd region. Fig. 2 shows the com-
parison of the NNLO coefficient of the thrust distributionasained from the numerical program
with eq. (4.1). In the left plot of fig. 2 the x-axis sho\s— T) on a linear scale. This corresponds
to the hard region, where the NNLO result from the numericagpam is expected to give the cor-
rect answer. The middle plot of fig. 2 shows— T) on a logarithmic scale arourld — T) ~ 0.1.
This corresponds to the peak region or the overlap regioareviine perturbative NNLO result and
the one obtained from SCET agree. The right plot of fig. 2 shdwsT) on a logarithmic scale
around(1—T) =~ 0.001. This corresponds to the extreme two-jet region, in tvkhe logarithmic
terms are dominant. In this region the results from the nigaleprogram show a dependence on
the slicing parameter. The numerical resultsrfee 10°, 0 =107 andn = 10° are plotted. For
smaller values of) the SCET result is approached.
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