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1. Introduction

The Large Hadron Collider (LHC) is expected to have a great impact on particle physics phe-
nomenology. The increase of the centre-of-mass energy at the LHC with respect to the Tevatron
will result in a huge boost of the available data. Most of the processes which will be studied at the
LHC need to be calculated at least to next-to-leading order (NLO) in QCD, whereas there are some
for which a theoretical prediction is needed to next-to-next-to-leading order (NNLO). Electroweak
gauge boson pair production falls into the latter category.

The discovery of the Higgs boson is undoubtedly one of the primary goals for the LHC. The
elusive, so far, Higgs boson is responsible for the fermions and gaugebosons mass and also part
of the mechanism of dynamical breaking of the Electroweak (EW) symmetry. Another aim for
the LHC is the investigation of the non-Abelian gauge structure of the Standard Model (SM). A
detailed study of the hadronic production of gauge boson pairs,WW, WZ, ZZ, Wγ, Zγ, will allow
the measurement of the vector boson trilinear couplings and therefore, a comparison between data
and SM predictions.

Seen in this context, W pair production,

qq̄→W+W− , (1.1)

plays an important two-fold role: it serves as a signal process in the search for New Physics and
also is the dominant irreducible background to the promising Higgs discoverychannel

pp→ H →W∗W∗
→ l ν̄ l̄ ′ν ′ (1.2)

in the mass rangeMHiggs between 140 and 180 GeV [1].
The process is currently known to NLO accuracy [2, 3, 4, 5, 6, 7, 8].The NLO corrections

are large enhancing the tree-level by almost 70% which falls to a still large 30% after imposing a
jet veto. Therefore, one is bound to go one order higher in the perturbative expansion, namely, to
NNLO, in order to have a theoretical estimate with an accuracy of around 10%, which would allow
comparison against experimental measurements at the LHC.

The same process, hadronic W pair production, requires high accuracy theoretical estimates
when studied as background to Higgs production in order to match accuracies between signal and
background. The signal process for the Higgs discovery via gluon fusion,gg→ H, as well as the
processH →WW→ l ν̄ l̄ ′ν ′ are known to NNLO [9, 10, 11, 12, 13, 14, 15, 16, 17, 18], whereasthe
EW corrections are known beyond NLO [19]. W pair production in the loopinduced gluon fusion
channel,

gg→W+W− , (1.3)

needs also to be included in the background study. It contributes atO(α2
s ) relative to the quark-

anti-quark-annihilation channel but is nevertheless enhanced due to thelarge gluon flux at the
LHC [20, 21].

The first main difficulty in studying W pair production to NNLO in QCD is the calculation of
the two-loop virtual amplitude since this is a 2→ 2 process with massive external particles. The
virtual corrections in the high energy limit,M2

W ≪ s, t, u, whereM2
W is the W mass ands, t andu

the Mandelstam variables, have already been computed in Refs. [22, 23,24]. However, this is not
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enough as one cannot thus cover the whole kinematically interesting range .Therefore, in order to
cover all kinematical regions we proceed as follows. We perform a deepexpansion in the W mass
around the high energy limit which in combination with the method of numerical integration of
differential equations [25, 26, 27] allows us the numerical computation of the two-loop amplitude
with full mass dependence over the whole phase space.

2. The high energy limit result

The methodology for obtaining the massive amplitude in the high energy limit, namely the
limit where all the invariants are much larger than the W mass, is similar to the one followed in
Refs. [28, 29]. The amplitude is reduced to an expression that only contains a small number of
integrals (master integrals) with the help of the Laporta algorithm [30]. In this calculation for
the two-loop amplitude there are 71 master integrals. Next step is the construction, in a fully
automatised way, of the Mellin-Barnes (MB) representations [31, 32] of all the master integrals by
using theMBrepresentation package [33]. The representations are then analytically continued in
the number of space-time dimensions by means of theMB package [34], thus revealing the full
singularity structure. An asymptotic expansion in the mass parameter (W mass) isperformed by
closing contours and the integrals are finally resummed, either with the help ofXSummer [35] or
thePSLQ algorithm [36]. The result is expressed in terms of harmonic polylogarithms.

3. Power corrections and numerical evaluation

It was mentioned in the Introduction that the high energy limit result by itself is not enough.
The next step, following the methods applied in Ref. [37], is to compute powercorrections in the
W mass. A calculation with power corrections to a high enough order is sufficient for covering
most of the phase space apart from the region near threshold as well asthe regions corresponding
to small angle scattering.

We repeat here some of the notation of Ref. [24] for completeness. The charged vector-boson
production in the leading partonic scattering process corresponds to

q(p1)+q(p2) → W−(p3,m)+W+(p4,m) , (3.1)

wherepi denote the quark and W momenta andm is the mass of the W boson.

We have chosen to express the amplitude in terms of the kinematic variablesx andms which
are defined to be

x = −
t
s
, ms =

m2

s
, (3.2)

where

s= (p1 + p2)
2 and t = (p1− p3)

2
−m2 1. (3.3)

The variation then ofx within the range[1/2(1−β ),1/2(1+ β )], whereβ =
√

1−4m2/s is the
velocity, corresponds to angular variation between the forward and backward scattering.

1Note that the definition oft here is shifted with respect to the usual Mandelstamt.
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It is evident that any master integralMi can be expressed as

Mi = Mi (ms,x,ε) =
l

∑
j=k

ε j Ii j(ms,x), (3.4)

where the lowest power ofε in the sum can be−4.
The interesting point now is that the derivative of any Feynman integral withrespect to any

kinematical variable is again a Feynman integral with possibly higher powers of denominators or
numerators. These new Feynman integrals can also be reduced into mastersusing the Laporta
algorithm anew. This means that one can construct a partially triangular system of differential
equations in the mass, which can subsequently be solved in the form of a power series expansion,
with the expansion parameter in our case beingms, following the conventions above.

Let us therefore, differentiate with respect toms andx, we will then have respectively

ms
d

dms
Mi(ms,x,ε) = ∑

j

Ci j (ms,x,ε) M j(ms,x,ε) (3.5)

and

x
d
dx

Mi(ms,x,ε) = ∑
j

C′

i j (ms,x,ε) M j(ms,x,ε) . (3.6)

We use Eq. (3.5) to obtain the mass corrections for the masters calculating the power series expan-
sion up to orderm11

s (see also Ref. [37] for more details on the method). This deep expansion in
ms should be sufficient for most of the phase space but still not enough to cover the whole allowed
kinematical region. The way to proceed from this point is to numerically integrate the system of
differential equations.

In particular, we choose to have the masters expressed in the form of Eq.(3.4), where theε
dependence is explicit. We can then work with the coefficients of theε terms and accordingly have

ms
d

dms
Ii(ms,x) = ∑

j

JM
i j (ms,x) I j(ms,x) (3.7)

and

x
d
dx

Ii(ms,x) = ∑
j

JX
i j (ms,x) I j(ms,x), (3.8)

where the Jacobian matricesJM andJX have rational function elements.
By using this last system of differential equations, one can obtain a full numerical solution to

the problem. What we are essentially dealing now with is an initial value problem and the main
requirement is to have the initial conditions to proper accuracy. The initial conditions would be the
values of the masters at a proper kinematical point which we call initial point. The initial point has
to be chosen somewhere in the high energy limit region, wherems is small and therefore, the values
obtained by the power series expansion are very accurate. Starting from there, one can evolve to
any other point of the phase space by numerically integrating the system of differential equations
Eqs. (3.7) and (3.8).

We parametrise with a suitable grid of points the region close to threshold and then we calcu-
late the masters for all points of the grid by evolving as described previously. Given that the master
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integrals have to be very smooth one can use, after having obtained the values for the grid points,
interpolation to get the values at any point of the region. We use 1600 points for the grid and take
as initial conditions the values of the master integrals at the pointms = 5×10−3, x = 1/4. The
relative errors at that point were estimated not to exceed 10−18.

The numerical integration is performed by using one of the most advanced software pack-
ages implementing the variable coefficient multistep method (ODEPACK) [38]. Weuse quadruple
precision to maximise accuracy. The values at any single grid point can be obtained in about 15
minutes in average (with a typical 2GHz Intel Core 2 Duo system). The compilation is done with
the Intel Fortran compiler. The accuracy is around 10 digits for most of thepoints of the grid. It
is interesting to note that in order to perform the numerical integration one needs to deform the
contour in the complex plane away from the real axis. This is due to the fact that along the real axis
there are spurious singularities. We use an elliptic contour and we achieve abetter estimate of the
final global error by calculating more than once for each point of the grid, using each time different
eccentricities.

There will be no results presented as we only report on work in progress. The aim here was
to describe the numerical method, the results of the study will be presented in detail in a future
publication [39].

4. Conclusions

W pair production via quark-anti-quark-annihilation is an important process for the LHC seen
both as signal in the search for New Physics and as the dominant irreducible background for the
Higgs discovery channel:H → WW→ 4 leptons. Therefore, the need for accurate study of this
process at the LHC is beyond dispute. After having calculated the two-loopand the one-loop-
squared virtual QCD corrections to the W boson pair production in the limit where all kinematical
invariants are large compared to the mass of the W boson we proceed to the next step. Namely, we
use a combination of a deep expansion in the W mass around the high energy limitand of numerical
integration of differential equations that allows the computation of the two-loopamplitude with full
mass dependence over the whole phase space.
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