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1. Three-loop fermion and gluon form factors

In this Section we consider massless QCD and discuss thelatrrections to the photon-
guark and Higgs-boson-gluon vertex (see also Ref. [1] afeterces therein). It is convenient to
decompose the vertex functions according to the Lorentztstre and define the form factolfg
andFgvialg = y*Fq(q?),Tg" = (du- 02 9*Y —ay a5 ) Fy(a?) , whereq = g1 + gz anday (q) is the
incoming (anti-)quark momentum in the caseFgf andFy depends on the gluon momermaand
g with polarization vectors#(q;) ande”(qp). Both forF, andFg, which are obtained by applying
appropriate projectors, we haq%: q% = 0. Some sample Feynman diagrams contributingyto
andFy are shown in Fig. 1.

For our calculation we have used two different setups. Tlsichdea of the first one has
been described in Refs. [2]: integral representationshiercbefficients of the master integrals are
derived. They depend on the exponents of the denominataitsedhtegral under consideration
and the space-time dimensidn In the recent years a procedure has been developed to &valua
the resulting parameter integrals in the limit of ladjésee, e.g., Ref. [3]). Knowing sufficiently
many expansion terms the coefficient function can be rengsist since (for fixed exponents) it
is a rational function ird. The evaluation of the three-loop vertex corrections pedfjuite a lot
from the experience gained in the context of the evaluatfagheofour-loop two-point functions [4]
and the findings of Ref. [5]. In the latter paper it has beemwshtihat the recurrence relations of
n-loop three-point functions are equivalent(to+ 1)-loop two-point functions.

The second method has only been applied to the singlet dmsg(see, e.g., Fig. 1(b)) con-
tributing to Fy. It relies on the idea to combine the Laporta method [6] with Grobner bases
technique [7] which has been published in the computer €bdRE [8].

We parameterize the results fBg and Fy in terms of the bare coupling which allows us to
factorize all occurring logarithms of the form(Ig%/u?), whereQ? = —g? > 0, and to cast the
expressions in the fornx& g, g)

n 2\ hé
FX:l—i—;(j—]i) (%) R (L.1)

We refrain from listing the results in terms of general SW{Blpur factors, which can be found in
Ref. [9], however, we present for illustration the fidifart ofFy in the case of QCD where it takes

(@) (b)

Figure 1: Sample Feynman diagrams contributing to Eye((a) and (b)) andg (c) at three-loop order.
Straight and curly lines denote quarks and gluons, respebgti

I\we refer to Refs. [10] for the divergent contribution.
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the form
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The two constantXg 1 and Xg, take the numerical valueXy; ~ 14289963678666183591 and
X922 5280583+ 0.0326 whereXg 1 is available analytically [11] an¥g > is known numerically [9,
11] with the indicated precision.

The new NNNLO results for the form factors constitute buitfiblocks for a number of ap-
plications. Among them are the virtual corrections to Higgson production in gluon fusion, the
Drell-Yan process and the two-jet cross sectiog'ie™ collisions.

2. Three-loop matching of the vector current

In contrast to the previous Section we consider here QCDnyith 1 massive and; massless
quarks and evaluate the matching coefficient between QCDhamdelativistic QCD (NRQCD) for
the vector current. This quantity is important for phenomesere two heavy quarks are produced
in electron-positron annihilation or a bound state of twauyequarks decays into a lepton pair.

The vector currents in QCD and NRQCD are givenjly= Qy“Q, and j* = ¢'aky, where
Q denotes a generic heavy quark with magsand ¢ and x are two-component Pauli spinors for
quark and anti-quark, respectively, aoi (k = 1,2, 3) are the Pauli matrices. The two curreiffs
and j* can be used to compute vertex corrections with two on-shielilg and momentg andap
(Ty andf,). From the requirement that the results agree up to poweeatons inmg defines the
matching coefficient,

Zoly = 6 Z2oZ 7y +. .., (2.1)

whereZ, denotes the on-shell wave function renormalization coni$i®, 13] and quantities with
a tilde are defined within NRQCD. The ellipses in Eq. (2.1yespnt terms of order/ing which
are neglected.

For the evaluation o€, it is convenient to consides” = (qu + g2)% ~ 4m§ and apply the
so-called threshold expansion [14] g which identifies the hard, soft, potential and ultra-soft
integration regions. The latter three contributions aesent both on the left- and right-hand side
of Eq. (2.1) and thus cancel out. Only the hard contributidrergg? = 4mg and which is only
present il has to be evaluated. This reasoning is based on the use ohBional Regularization
which is crucial for the evaluation of higher order correns toc, since scaleless integrals are
automatically set to zero. This concerns in particidaandi™, which are both identical to one.

The two-loop corrections to, have been evaluated in Refs. [15, 16, 17] and the fermionic
three-loop contribution in Refs. [18, 19]. The setup usedR@i. [19] is completely automated.
It is based on a chain of programs which work hand-in-hande Jthrting point iSQGRAF [20]
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which generates the amplitudes for each Feynman diagramnéxt stegj2e andexp [21] are
used in order to identify the topologies and generate ingpitession inFORM[22] format. The
same input file containing the description of the topologiesded byexp is also used in order to
provide the input forcr usher [23] which performs the reduction of all occurring integréb a
basic set, so-called the master integrals. The topologysfidso used for providing the necessary
input for FI ESTA[24, 25] which is employed for the numerical evaluation dfahster integrals.

There are several checks on the correctness of our resulidfarfas the analytical part is
concerned the most important one is the evaluation of therRay diagrams or general gauge
parameteg: we have checked that the line&fterm drops out in our three-loop result. A strong
check of the numerical part of our calculation is the chadgeraster integral basis, which is
achieved analytically with the help of the integration{igrs relations generated loy usher.
In the new expression, which is a completely different Imeambination of master integrals, the
numerical evaluation is again performed with the helFloESTA.

In numerical form the result fas, is given by (foru = mg):

B as as\ 2
o = 1-267— +(~4455+0.41n) ( n)
2\ (Os)3 4
+ (cyg — 0.93(8)ny — 0.09nmNy + 120.75(1)n; — 0.82n7) (;) +0(ag). (2.2)
Once the purely gluonic contributiong is available, which is expected to be numerically dom-
inant, ¢, can be used in the analysis of the third-order cross secti@ie™ — tt + X) close to
threshold or the extraction of the bottom quark mass fibsum rules.

3. Virtual NNLO correctionsto Higgs production in gluon fusion

In this Section we go beyond the effective theory which haanhgsed in Section 1 in order
to defineFy and consider the gluon-Higgs vertex with finite top quark snabhis constitutes an
important contribution to the gluon fusion process whick thee largest production cross section for
Higgs bosons both at Tevatron and LHC. Whereas the NLO dayrecare exactly known [26, 27,
28] at NNLO until recently only approximations for infiniyeheavy top quark have been available.
Recently this gap has been closed and in the works [29, 3Qh8TJINLO corrections to the cross
sectiono(pp — H + X) incorporating the top quark mass dependence have beeragalurhe
virtual corrections have been evaluated before in Refs. 332 In the following we describe in
more detail the computation of Ref. [32].

The virtual contribution to the partonic cross section carcast in the form

. R a as\ 2
Gy = 60 <1+Fs 5+ (ES) 6(2>+..-> , (3.1)

where the LO cross section is given Byo = Gr a2fo(p,€) 6(1—x)/(288/2m(1—¢)), with
x = MZ/$. v/Sis the partonic center-of-mass energy. The functipand the analytical results of
the first five terms in the = M3 /MZ — 0 expansion fot) and6® can be found in Ref. [32].
Sample diagrams contributing 82 are shown in Fig. 2(a).

The setup is similar to the one used in Section 2. A differéa@@nnected to the asymptotic
expansion in the limiM3 < M? which is performed with the prograexp [21] and independently
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Figure 2: (a) Sample diagrams contributing to the NNLO virtual cofi@ts togg — H. Solid lines
represent the top quark with mdsls and curly (dotted) lines massless gluons (the Higgs bogbhJinite
part of 5 as a function op. The longer-dashed lines include successively highersidg.

with an in-housdPer | program [34]. In this way the three-loop vertex integrals e¥duced to
one-, two-, and three-loop vacuum integrals which are edeatith MATAD [35], and to massless
one- and two-loop vertex contributions which are reduceshaster integrals (see, e.g., Ref. [36])
with the help ofFl RE [37] and an independent program based of the Laprota-method

Explicit results for6Y andd@ can be found in Ref. [32]. In this contribution we discuss the
convergence properties in Fig. 2(b) where the finite pad®fis shown as a function gf. One
observes good convergence ugte: 3 which corresponds vy ~ 1.7M; ~ 300 GeV.
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