PROCEEDINGS

OF SCIENCE

Radiative corrections to Quantum Hall Effect

Alexander Penin*'
Department of Physics, University of Alberta
E-mail: apeni n@hys. ual berta. ca

We consider the quantum Hall effect in quantum electrodyiosuand find a deviation from the
quantum mechanical prediction for the Hall conductivitgda radiative antiscreening of electric

charge in an external magnetic field

RADCOR 2009 - 9th International Symposium on Radiative Corrections (Applications of Quantum Field
Theory to Phenomenol ogy)

October 25-30 2009

Ascona, Switzerland

*Speaker.
TThis work is supported by the Alberta Ingenuity foundation AISERC.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Radiative corrections to Quantum Hall Effect Alexander Penin

The quantum Hall effect (QHE) [1, 2] is a remarkable phenooneremaining in the focus
of experimental and theoretical research over the lasetdexzades. The study of the QHE led
to development of new fundamental physical concepts [3Adlthe same time the QHE plays a
crucial role in metrology and determination of fundamestaistants [5].

In the QHE, in sharp contrast to the prediction of classitatteodynamics, the conductivity
of the two-dimensional electron system in a strong trarsevenagnetic field at low temperature
has plateaus as a function of the magnetic field strengtheset plateaus the conductivity is given
by integer or specific fractional multiples R[gl, whereRy is a universal parameter known as the
von Kilitzing constant. A simple quantum mechanical congitlen of the noninteracting electron
gas relates it to the fine structure constant

Rt=2a. (1)

A remarkable property of a two dimensional electron systarmagnetic field is that this naive
result is stable against all kinds of perturbations whichndb result in a qualitative change of
the Landau spectrum. This has been proven first in Ref. [@] &s0 Ref. [7]) by an elegant use
of gauge invariance. Later, a relation of the Hall condulgtito the topological invariants of the
adiabatic ground state space has been established [8,.9ML@h work has been done to find a
possible deviation from Eq. (1) (seq. [11]). However, leaving aside finite temperature and edge
effects, no universal corrections have been found and Bds (urrently considered to be exact
[5]. This would distinguish the quantum Hall conductanceoae of a very few characteristics
of many-particle interacting quantum systems exactly ipted by theory. On the other hand the
exact relation (1) would allow for determination of the firteusture constant witla priori zero
theoretical uncertainty.

However in quantum electrodynamics (QED) quantum fieldot$féead to a deviation from
the quantum mechanical prediction for the Hall conductdti@é The physics behind this phe-
nomenon is in a modification of the local electromagneticptiog of electrons due to vacuum
polarization by highly virtual electron-positron pairséarstrong magnetic field, which can roughly
be described as radiative antiscreening of the electrigehdollowing Ref. [6] we consider the
Hall currentl around an asymptotically large loop of a two-dimensionabon subject to a time-
independent locally homogeneous magnetic figland an electric fieldE. The spatial vectors,

B, andE are orthogonal to each other and the magnetic field is noronidet ribbon surface, see
Fig. 1. For the futher analysis it is convenient to introdaoeuxiliary magnetic flus through the
loop. The Hall conductivityr;* is defined by the equatidn= RV whereV is the potential drop
across the ribbon. In QHE it is given IR, = vR.* where the filling factow can be either integer
[1] or fractional [2]. We focus on the integer QHE since theecaf fractionalv can be understood
as the integer QHE for fractionally charged quasipartif3$sin QED the dynamics of an electron
in a magnetic field can be described by the effective Hamiltonian of the follogviorm

2

2m

H=ePg— — + 8K, )

IThroughout the paper, if it is not explicitly stated otheswjiwe adopt the system of units used in particle physics,
wherel = ¢ = 1 anda = €*/(4m).
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Figure 1. Geometry of the Hall current. The size of the loop is muchdaiian any other scale of the
problem and the magnetic field is homogeneous near the susfdabe ribbon.

whereA is the potential of the electric field, D is the spatial covariant derivative; (m*) stands
for the effective charge (mass) of the electron, @ represents the radiative and relativistic
corrections as well as the interaction with the medium. Taemeters of the Hamiltonian can
be systematically computed in QED as a series iand 8 within the effective theory approach
[13]. The quantum Hall conductivity is known to be indepemdef m* andd.# [6, 8]. Thus the
only source of the corrections to Eqg. (1) is electron couptimthe external fields. This coupling
is modified by vacuum polarization through creation of haitlial electron-positron pairs. In
the absence of a magnetic field this effect is reabsorbed doyihshell renormalization of the
physical electron charge. For a nonvanishing magnetic field the vacuum polarizatiannot
be “renormalized out” and the effective charge does diffemfe. Since the magnetic fiel8
explicitly breaks down the Lorentz invariance, the effeetcharges are in general different for
different external fields. For the calculation of the Halhdactivity we need beside* another
effective chargee, which parametrizes the coupling of the electrons to théoveaotential of the
auxiliary magnetic flux in the covariant derivatie= 0—iedA®+ ...

The effective charges are determined by the behavior ofebeum polarization tensét,,, (q)
at small four-momentum transfey By using the integral representation of Refs. [14, 15] it is
straightforward to derive the leading variation of the pialation tensor due to the magnetic field
in the limit g — 0, which reads

a -1
5|_|/Jv(Q) = _TTBZES Z(quqz—qHQV)

—7(guvq2—qqu)H+4(9uvq2_quqv)L : (3)

The correction to the polarization tensor is transversaumse of the gauge invariance. At the same
time the Lorentz invariance is broken and Eq. (3) includestthnsverse projectors in the “par-
allel” (go,dj) and “orthogonal”(d.) two-dimensional subspaces of the whole four-dimensional
Minkowskian momentum spac@p,d). Hered; andd. components correspond to the spatial
momentum parallel and orthogonal to the magnetic field, eetsgely. The polarization tensor
determines both the correction to the local coupling ofteters to the electromagnetic potential
and the correction to the photon propagator, which is nietatrsince the external magnetic field
changes the photon dispersion law [15].
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Figure 2: Feynman diagrams in full QEa) and in the nonrelativistic effective theofly) representing the
antiscreening of the electric charge in the external magrietd. The arrow lines correspond to the free
electron propagators. The bold arrow lines corresponddelictron propagating in the external magnetic
field. The dashed lines represent the electric potentiakithssed wavy lines represent the external magnetic
field, andde=¢e" —e.

Let us now consider the effective chargie which parametrizes the interaction of the electron
to the homogeneous electric field. The first two terms in sgjimackets of Eq. (3) result in a
modification of the static Coulomb potential between twanflidie charges [16]

wm:%[ _W<E_gfﬁéﬂ 4)

where® is the angle betwee andr, i.e. the Coulomb interaction in the presence of the magnetic
field becomes anisotropic. Taking an infinite uniformly gjeat plane as a source Bfand using
the potential (3) for the electron interaction with the deadensity, one gets the following result

&:e[+—_ﬁ2 (5)

where the only nonvanishing contribution is due to the figtdntz covariant term of Eq. (3). The
angular dependent term in Eq. (4) represents the corretttitie Coulomb photon propagator and
its contribution to Eqg. (5) vanishes. Thus the vacuum peédion in the magnetic field enhances
the electron coupling to the electric field which generatesHall current. Graphically the effect
is represented by the Feynman diagrams in Fig. 2.

Similar effect occurs in the case of the effective chag&he vector potential of the auxiliary
magnetic flux has onlA, component and its momentum has oglycomponent. Thus only the
first term of Eq. (3) contributes to the corresponding caupénd one gets =e [1+ aBz/(45n)] ,

i.e. € =¢€*. Note thate' is exactly the parameter which appears in the quantizatoalition for
the auxiliary magnetic flux through the contour of the Haliremt. Hence in the presence of the
magnetic fieldB the “effective” flux quantum becomesy, = 271/€ or

e
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Now we are in a position to derive the correction to the quantoechanical result for the Hall
conductivity. In general, the Hall current is given by théegral of the current density over the
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ribbon cross section
= [ [17)+ 85 (7)) aredra, )

wherer = (r|,rg,rg) is a vector with the components parallel to ihé&, andB, respectively. A
single electron contribution to the unperturbed curremisdg can be written as follows

i (F) = ~i= ¢ (7D (7). ®)

where (1) is the eigenfunction of the Hamiltonian (2). In QED the pdpation to the current
density is due to the vacuum polarization. The Hall curreswdl in the orthogonal subspace and
the corresponding correction to the vacuum polarizatiagivien by the first and the last terms of
Eq. (3). However, the last term of Eq. (3) does not vanishgfoe= 0 and represent the change
of the photon dispersion law rather than the correction ¢octirrent density, which is completely
determined by the first Lorentz covariant term

3i1(7) = 25 2B (7). ©

The expression for the Hall current takes the following form

la,, )
«_@+Eﬁﬁ>/mmhm& (10)
The integral in Eq. (10) can be expressed through the diévat the electron energy in ®
. ed®
/j| (F)credrg = —< <. (11)

seee.g. Ref. [11]. Thus our final expression for the Hall current iead

dé

|:—%,

(12)
where &; is the total energy of the electrons contributing to the entrr As has been shown in
Ref. [6], the flux® acts as a quantum pump: changing itrbguantad;, results in a net transfer of
nv electrons across the ribbon, which corresponds to an emvarigtion ofnve*V. Thus for the

Hall conductivity one gets
e*

Ry! = V"Tf)' (13)
Putting together Egs. (5,6,13) we obtain the final expres&iothe von Klitzing constant
Rl = 2a 1+3532}, (14)
451
or in physical units ,
Rt = % [1+ 4—25% <£%> ] : (15)

We would like to emphasize that the characteristic distayidbe vacuum fluctuations resulting
in the correction to the Hall conductivity is given by the@ten Compton wavelength of order
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10~1?m, which is far smaller than the actual thickness of the layleens the electrons are localized,

of order 108 m. Thus the correction tBx is due to an intrinsically three-dimensional effect, which

is not prohibited by the topological and gauge invariancgiarents developed in two dimensions.
The correction term in Eq. (15) can be rewritten as follows

2a(B)?
24a (B—O> , (16)
whereBy = ¢?n?/(he) ~ 4.41-10° T. A typical value of the magnetic field in current experingent
corresponds t8/Bg ~ 1078, Thus numerically Eq. (16) amounts to a tiny 20 correction.
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