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The quantum Hall effect (QHE) [1, 2] is a remarkable phenomenon remaining in the focus
of experimental and theoretical research over the last three decades. The study of the QHE led
to development of new fundamental physical concepts [3, 4].At the same time the QHE plays a
crucial role in metrology and determination of fundamentalconstants [5].

In the QHE, in sharp contrast to the prediction of classical electrodynamics, the conductivity
of the two-dimensional electron system in a strong transverse magnetic field at low temperature
has plateaus as a function of the magnetic field strength. At these plateaus the conductivity is given
by integer or specific fractional multiples ofR−1

K , whereRK is a universal parameter known as the
von Klitzing constant. A simple quantum mechanical consideration of the noninteracting electron
gas relates it to the fine structure constant1

R−1
K = 2α . (1)

A remarkable property of a two dimensional electron system in magnetic field is that this naïve
result is stable against all kinds of perturbations which donot result in a qualitative change of
the Landau spectrum. This has been proven first in Ref. [6] (see also Ref. [7]) by an elegant use
of gauge invariance. Later, a relation of the Hall conductivity to the topological invariants of the
adiabatic ground state space has been established [8, 9, 10]. Much work has been done to find a
possible deviation from Eq. (1) (seee.g. [11]). However, leaving aside finite temperature and edge
effects, no universal corrections have been found and Eq. (1) is currently considered to be exact
[5]. This would distinguish the quantum Hall conductance asone of a very few characteristics
of many-particle interacting quantum systems exactly predicted by theory. On the other hand the
exact relation (1) would allow for determination of the fine structure constant witha priori zero
theoretical uncertainty.

However in quantum electrodynamics (QED) quantum field effects lead to a deviation from
the quantum mechanical prediction for the Hall conductance[12]. The physics behind this phe-
nomenon is in a modification of the local electromagnetic coupling of electrons due to vacuum
polarization by highly virtual electron-positron pairs ina strong magnetic field, which can roughly
be described as radiative antiscreening of the electric charge. Following Ref. [6] we consider the
Hall currentI around an asymptotically large loop of a two-dimensional ribbon subject to a time-
independent locally homogeneous magnetic fieldB and an electric fieldE. The spatial vectors~I,
~B, and~E are orthogonal to each other and the magnetic field is normal to the ribbon surface, see
Fig. 1. For the futher analysis it is convenient to introducean auxiliary magnetic fluxΦ through the
loop. The Hall conductivityR−1

H is defined by the equationI = R−1
H V whereV is the potential drop

across the ribbon. In QHE it is given byR−1
H = νR−1

K where the filling factorν can be either integer
[1] or fractional [2]. We focus on the integer QHE since the case of fractionalν can be understood
as the integer QHE for fractionally charged quasiparticles[3]. In QED the dynamics of an electron
in a magnetic fieldB can be described by the effective Hamiltonian of the following form

H = e∗A0−
~D2

2m∗
+ δH , (2)

1Throughout the paper, if it is not explicitly stated otherwise, we adopt the system of units used in particle physics,
whereh̄ = c = 1 andα = e2/(4π).

2



P
o
S
(
R
A
D
C
O
R
2
0
0
9
)
0
7
7

Radiative corrections to Quantum Hall Effect Alexander Penin

~E

~B

~IΦ

Figure 1: Geometry of the Hall current. The size of the loop is much larger than any other scale of the
problem and the magnetic field is homogeneous near the surface of the ribbon.

whereA0 is the potential of the electric fieldE, ~D is the spatial covariant derivative,e∗ (m∗) stands
for the effective charge (mass) of the electron, andδH represents the radiative and relativistic
corrections as well as the interaction with the medium. The parameters of the Hamiltonian can
be systematically computed in QED as a series inα andβ within the effective theory approach
[13]. The quantum Hall conductivity is known to be independent of m∗ andδH [6, 8]. Thus the
only source of the corrections to Eq. (1) is electron coupling to the external fields. This coupling
is modified by vacuum polarization through creation of hard virtual electron-positron pairs. In
the absence of a magnetic field this effect is reabsorbed by the on-shell renormalization of the
physical electron chargee. For a nonvanishing magnetic field the vacuum polarization cannot
be “renormalized out” and the effective charge does differ from e. Since the magnetic fieldB
explicitly breaks down the Lorentz invariance, the effective charges are in general different for
different external fields. For the calculation of the Hall conductivity we need besidee∗ another
effective chargee′, which parametrizes the coupling of the electrons to the vector potential of the
auxiliary magnetic flux in the covariant derivative~D =~∂ − ie′~AΦ + . . ..

The effective charges are determined by the behavior of the vacuum polarization tensorΠµν(q)

at small four-momentum transferq. By using the integral representation of Refs. [14, 15] it is
straightforward to derive the leading variation of the polarization tensor due to the magnetic field
in the limit q → 0, which reads

δΠµν(q) = −
α
π

β 2 1
45

[

2
(

gµνq2−qµqν
)

−7
(

gµν q2−qµqν
)

‖
+4

(

gµνq2−qµqν
)

⊥

]

. (3)

The correction to the polarization tensor is transverse because of the gauge invariance. At the same
time the Lorentz invariance is broken and Eq. (3) includes the transverse projectors in the “par-
allel” (q0,~q‖) and “orthogonal”(~q⊥) two-dimensional subspaces of the whole four-dimensional
Minkowskian momentum space(q0,~q). Here~q‖ and~q⊥ components correspond to the spatial
momentum parallel and orthogonal to the magnetic field, respectively. The polarization tensor
determines both the correction to the local coupling of electrons to the electromagnetic potential
and the correction to the photon propagator, which is non-trivial since the external magnetic field
changes the photon dispersion law [15].
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Figure 2: Feynman diagrams in full QED(a) and in the nonrelativistic effective theory(b) representing the
antiscreening of the electric charge in the external magnetic field. The arrow lines correspond to the free
electron propagators. The bold arrow lines correspond to the electron propagating in the external magnetic
field. The dashed lines represent the electric potential, the crossed wavy lines represent the external magnetic
field, andδe = e∗− e.

Let us now consider the effective chargee∗, which parametrizes the interaction of the electron
to the homogeneous electric field. The first two terms in square brackets of Eq. (3) result in a
modification of the static Coulomb potential between two pointlike charges [16]

V (~r) =
α
r

[

1+
α
π

β 2
(

2
45

−
7
90

sin2 θ
)]

, (4)

whereθ is the angle between~B and~r, i.e. the Coulomb interaction in the presence of the magnetic
field becomes anisotropic. Taking an infinite uniformly charged plane as a source ofE and using
the potential (3) for the electron interaction with the charge density, one gets the following result

e∗ = e

[

1+
1
45

α
π

β 2
]

(5)

where the only nonvanishing contribution is due to the first Lorentz covariant term of Eq. (3). The
angular dependent term in Eq. (4) represents the correctionto the Coulomb photon propagator and
its contribution to Eq. (5) vanishes. Thus the vacuum polarization in the magnetic field enhances
the electron coupling to the electric field which generates the Hall current. Graphically the effect
is represented by the Feynman diagrams in Fig. 2.

Similar effect occurs in the case of the effective chargee′. The vector potential of the auxiliary
magnetic flux has only~A⊥ component and its momentum has only~q‖ component. Thus only the
first term of Eq. (3) contributes to the corresponding coupling and one getse′ = e

[

1+ αβ 2/(45π)
]

,
i.e. e′ = e∗. Note thate′ is exactly the parameter which appears in the quantization condition for
the auxiliary magnetic flux through the contour of the Hall current. Hence in the presence of the
magnetic fieldB the “effective” flux quantum becomesΦ′

0 = 2π/e′ or

(Φ′
0)

−1 =
e

2π

[

1+
1
45

α
π

β 2
]

. (6)

Now we are in a position to derive the correction to the quantum mechanical result for the Hall
conductivity. In general, the Hall current is given by the integral of the current density over the
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ribbon cross section
I =

∫

[ jI(~r)+ δ jI(~r)]drEdrB , (7)

where~r = (rI ,rE ,rB) is a vector with the components parallel to the~I, ~E, and~B, respectively. A
single electron contribution to the unperturbed current density can be written as follows

jI(~r) = −i
e
m

φ∗(~r)DIφ(~r) , (8)

whereφ(~r) is the eigenfunction of the Hamiltonian (2). In QED the perturbation to the current
density is due to the vacuum polarization. The Hall current flows in the orthogonal subspace and
the corresponding correction to the vacuum polarization isgiven by the first and the last terms of
Eq. (3). However, the last term of Eq. (3) does not vanish forq2 = 0 and represent the change
of the photon dispersion law rather than the correction to the current density, which is completely
determined by the first Lorentz covariant term

δ jI(~r) =
1
45

α
π

β 2 jI(~r) , (9)

The expression for the Hall current takes the following form

I =

(

1+
1
45

α
π

β 2
)

∫

jI(~r)drEdrB . (10)

The integral in Eq. (10) can be expressed through the derivative of the electron energyE in Φ
∫

jI(~r)drEdrB = −
e
e′

dE

dΦ
, (11)

seee.g. Ref. [11]. Thus our final expression for the Hall current reads

I = −
dEt

dΦ
, (12)

whereEt is the total energy of the electrons contributing to the current. As has been shown in
Ref. [6], the fluxΦ acts as a quantum pump: changing it byn quantaΦ′

0 results in a net transfer of
nν electrons across the ribbon, which corresponds to an energyvariation ofnνe∗V . Thus for the
Hall conductivity one gets

R−1
H = ν

e∗

Φ′
0
. (13)

Putting together Eqs. (5,6,13) we obtain the final expression for the von Klitzing constant

R−1
K = 2α

[

1+
2
45

α
π

β 2
]

, (14)

or in physical units

R−1
K =

e2

2π h̄

[

1+
2
45

α
π

(

h̄eB
c2m2

)2
]

. (15)

We would like to emphasize that the characteristic distanceof the vacuum fluctuations resulting
in the correction to the Hall conductivity is given by the electron Compton wavelength of order
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10−12 m, which is far smaller than the actual thickness of the layer where the electrons are localized,
of order 10−8 m. Thus the correction toRK is due to an intrinsically three-dimensional effect, which
is not prohibited by the topological and gauge invariance arguments developed in two dimensions.

The correction term in Eq. (15) can be rewritten as follows

2
45

α
π

(

B
B0

)2

, (16)

whereB0 = c2m2/(h̄e) ≈ 4.41·109 T. A typical value of the magnetic field in current experiments
corresponds toB/B0 ∼ 10−8. Thus numerically Eq. (16) amounts to a tiny 10−20 correction.
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